AFRL-IF-RS-TR-2001-3
Final Technical Report
January 2001

ON WEB-BASED MODELS AND REPOSITORIES

University of Florida

Paul A. Fishwick and John F. Hopkins

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

20010403 104

ROME, NEW YORK
R —

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-3 has been reviewed and is approved for publication.

APPROVED: MD

ALEXF. SISTI
Project Engineer

7 " o / ’/ 4 - L
FOR THE DIRECTOR: | ////}7// s /&22;7

ROBERT E. MARMELSTEIN, Maj, Deputy Chief
Information Systems Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFSB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 07040188

PuNI: monm burden for this coflection of mlonnnmn is estimated to average 1 hour per response, incluting the time for raviewing instructions, searching existing data sources, gnnormg |nd maintaining the data needed, md completing and mmwnq
of i Send this burden astimate or any other sspect of this collection of information, including suggestions for reducing this burdan, to W Services, D for
menom and Reports, 1215 Jeffarson Davis thwlv Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY /Leave blank] 2. REPORT DATE
JANUARY 2001

3. REPORT TYPE AND DATES COVERED

Final Sep 98 - Aug 00

4. TITLE AND SUBTITLE
ON WEB-BASED MODELS AND REPOSITORIES

5. FUNDING NUMBERS

C - F30602-98-C-0269
PE - 62702F

PR - 4600

6. AUTHOR(S]
Paul A. Fishwick and John F. Hopkins

TA- 1I
WU - D7

7. PERFORMING ORGANIZATION NAMEIS) AND ADDRESS(ES)

University of Florida

Department of Computers and Information Science Engineering
Gainesville Florida 32611-6120

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)
Air Force Research Laboratory/IFSB

525 Brooks Road

Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-200L -3

11. SUPPLEMENTARY NOTES .

Air Force Research Laboratory Project Engineer: Alex F. Sisti/IFSB/(315) 330-3983

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words/

philosophical foundations behind it.

This document contains a description of research performed at the University of Florida on the concept and implementation
of web-based models and repositories. The document is divided into three sections. The first section briefly presents an
overview of the contract...what was accomplished, why certain areas were pursued, and how those efforts contribute to the
field of modeling, in particular, and computer simulation, more generally. The second section represents papers published
by the research group; while the final section is comprised of classic readings that bear a relation to this project and to the

14. SUBJECT TERMS

15. NUMBER OF PAGES

Web-Based, 3-D Modeling, Repositories, Digital Objects, Aesthetic Programmmg, 172
Multimodeling 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT '
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
Srt.ﬂarmgfgrm 298 gﬂev 2-89) (EG)

Designed using Pmonn Pru WHS/DIOR, Oct 84

Table of Contents
On Web-Based Models and Repositories
Issues with Web-Publishable Digital Objects
3D Behavioral Model Design for Simulation and Software Engineering
A Hybrid Visual Environment for Models and Objects
On the Use of 3D Metaphor in Programming

A Three-Dimensional Synthetic Human Agent Metaphor for Modeling and
Simulation

Web-Based Simulation: Revolution or Evolution?
A Modeling Strategy for the NASA Intelligent Synthesis Environment
Digital Object Multimodel Simulation Formalism and Architecture

OOPM/RT: A Multimodeling Methodology for Real-Time Simulation

12

35

45

53

64

83

94

120

136

Introduction

This document contains a description of research performed at the University of Florida
on the concept and implementation of web-based models and repositories. The document
is divided into three sections. The first section briefly presents an overview of contract
F30602-98-C-0269; what was accomplished, why certain areas were pursued, and how
those efforts contribute to the field of modeling and simulation. The second section
consists of papers published by the research team, while the final section is comprised of
classic readings in the literature that bear a relation to this project, and to the
philosophical foundations behind it.

Alex F. Sisti

ii

On Web-Based Models and Repositories

Paul A. Fishwick

Department of Computer & Information Science & Engineering
University of Florida
Gainesville, Florida 32611, U.S.A.
fishwick@cise.ufl.edu

October 18, 2000

1 CONTRACT

This document refers to work performed under contract F30602-98-C-0269, “A Web-Based
Model Repository for Sharing and Reusing Model Components” under the direction of
Program Manager Alex Sisti and Contracting Officer Gary Slopka, Rome Lab. Paul Fish-
wick, University of Florida was the Principal Investigator.

2 OVERVIEW

This document contains a description of the research that we performed at the University
of Florida on the concept and implementation of web-based models and repositories. The
document is divided into three sections. We are inside the first section, where I overview
what we did during the period of the contract, what was accomplished, why we did it,
and how I see our efforts contributing to the field of modeling, in particular, and com-
puter simulation, more generally. The second section represents papers published by our
research group, and the third section is a set of reading material that bears a relation
to the rube Project in its application of metaphor to model construction. My students
deserve a tremendous amount of credit for not only implementations, but also for their
philosophies and contributions to methodology. They are the fuel that drives the research,
whereas their own fuel is their assistantship status and their university credit. Together,
with my students, I worked on basic research elements, some of which will ideally have
an impact on the way that models are constructed using a time horizon extending out
10 years hence. The students involved in this project were Robert Cubert, Kangsun Lee,
John Hopkins, Linda Dance, and Taewoo Kim.

3 GOAL

When I wrote the proposal a year and a half ago, I promised to deliver a methodology and
system for web-based modeling and its associated repository mechanism. This has been
accomplished with the creation of two sorts of end products: refereed papers published
in the literature, and tested software. What does it mean to have a “web based model
repository?” A reductionist would suggest that one must first define the constraints on
what it means to be a “model” and then the machinery for enabling the World Wide Web
with models in the form of a repository. Both of these meanings involve inherent diffi-
culties, since model-making is vast in scope. If one asks a random selection of 10 people
what defines “modeling,” one easily gets 10 different answers, but it may come as some-
what of a surprise to get similar variance from 10 people who think of themselves as
experts in modeling and simulation (M&S). Instead of this situation being indicative of
paranoid schizophrenia, it suggests that the field of modeling is rich indeed, beyond any
of our wildest dreams. To wit, a quick look at the Webster’s dictionary reveals modeling
to be applicable to every human endeavor from logic and the arts to science. In contrast,
model execution is better understood and more limited when we speak of execution on
sequential machines. The execution of a model is accomplished through writing a com-
puter program. Since computer scientists have been writing computer programs for half
a century, albeit with a panoply of available languages, model execution methods limit
the scope of inquiry to program execution.

The Department of Defense is abuzz with the High Level Architecture (HLA), and
with good reason. HLA, along with its Distributed Interactive Simulation (DIS) ancestor,
promise to increase the efficiency of training in a virtual theatre of armed conflict. The
research goals of HLA are primarily those of executing programs, and not model design.
I recall being at a conference where Judith Dahmann suggested that solving the modeling
problem was more difficult, and that as a first step it was necessary for HLA to focus on
the immediate problem of designing federates and their accompanying protocols. Dah-
mann was correct, and the decision to build HLA, along with its execution methods and
communication procotols, served as the logical first step. HLA represents a significant
evolution from the DIS fledging, and will help the military to link disparate simulators
and simulations for training.

Because of its execution bias, HLA, however, has not addressed longer-term issues
regarding model design, even though preliminary object templates (OMTs) represent a
beginning. My contractual purpose was to consider potential model repository design
for HLA and its progeny, and to simultaneously perform research on modeling. HLA is
certainly not alone in its focus on execution. As it turns out, the vast majority of computer
simulation books present excellent material on statistical experimental designs, methods
for distributed and parallel execution, and coverage of state of the art simulation pack-
ages being executed. However, because modeling is so diverse, it has received insufficient

2

treatment. Nobody is quite sure what to do with modeling, where to place it, or how to
categorize it. Some work has been done, especially at the mathematical model level, but
more work remains to encompass all types of models. In 1994, I designed a taxonomy of
modeling that closely parallels styles of computer programming: declarative, functional,
constraint, and so forth. This taxonomy went beyond discrete event systems to capture
the structure and syntax of models, as well as applying semantics to the structure. A
salient point was to demonstrate that models can be classified by style rather than how
they are to be interpreted semantically for execution (i.e., discrete-event, continuous). Pro-
gramming languages are similarly organized. It is, perhaps, that modeling is part art and
part engineeering that makes it difficult to grasp, and limits its audience. In any event,
the influence of modeling is being increasingly felt in many areas of science and engineer-
ing. Pictures that were once drawn on paper now live inside the computer, and code can
be generated from the pictures, which causes the pictures to gain status and importance.
The pictures and the “look and feel” of a system capture the essence of modeling, since
they act to mediate human interpretation of dynamic system characteristics.

4 BACKGROUND PREPARATION

The path that we have taken has yielded many insights, all of which I feel will be valu-
able to the field of simulation and to the Air Force, being a large consumer of this field.
Our path begins during the writing of the proposal, when we finished our Multimodel
Object-Oriented Simulation Environment (MOOSE) implementation. MOOSE was sub-
sequently renamed OOPM, Object Oriented Physical Modeler, as a result of a potential
trademark infringement which came to our attention after the significant press that we
received from many newspapers and Wired Online. OOPM is a complete multimodeling
design and simulation system using traditional 2D graphic modeling elements. The idea
of multimodeling is to build models as we build houses—using diverse materials, each
material being used where it is best needed. Although, this may sound trivial at first,
multimodeling involves issues with formalism, inter-level coupling, and most impor-
tantly, the implementation of a system capable of simulating a model with many layers,
and supporting five model types (finite state machine, functional block model, rule-based
model, nth order nonlinear ordinary differential equation sets, and System Dynamics). In
retrospect, it is not too surprising that most modeling systems are homogeneous since
multimodeling is difficult to achieve in implementation, and expensive in the support of
more than a single model type. Multiple user interfaces are required when a model is
graphical. It is much easier to construct, for example, a Petri net modeler and simulator
because this represents only one model type, and therefore only one user interface.

The work on OOPM had many lessons for us, with the biggest lesson being that
of the creation and debugging of a Graphical User Interface (GUI), which was difficult

and labor-intensive. My hat is off to companies who can produce an effective, bug-free,
GUL, since the undertaking is substantial. In an attempt to make the GUI platform inde-
pendent, we started with Tcl/Tk on the front end and C++ on the back end. This was
done prior to the onslaught of Java in the marketplace, but still remains a good decision
given the performance advantages of C++ generated code, which tends to be highly effi-
cient. Unfortunately, Tcl/ Tk had its own warts and pecularities. We spent significant time
trying to work around known bugs, and derived a method for “object-oriented program-
ming by convention” since Tcl, being a scripting language, is not object-oriented. Working
with C++ was fairly straightforward since the C++ language, and its common tools, were
fairly mature by the mid 1990s, with the possible exception of template support.

5 QUESTION EVERYTHING

The idea behind a Gedanken experiment (i.e., mental model) is to question basic assump-
tions, see where these assumptions take you, and then proceed accordingly to create new
paths. I created several Gedanken experiments to help drive our research forward into
web-based modeling. Here are challenged assumptions starting with the homogenous
model type developed circa 1991:

1. A model shall be of one homogeneous type.

2. A model shall be static and not dynamic.

3. A model must conform to pre-defined standards.
4. A model shall not have aesthetic properties.

5. Modeling should adopt object-oriented design principles.

The questioning of these assumptions came very slowly over the period of many
months of study and research, often by reference to disciplines outside of the traditional
simulation books. The goal was to attempt to reinvent modeling in simulation so that it
could be seen as equivalent to the more common usage of the term. The modeling of
clay and the modeling of a finite state machine should not, in theory, be that different.
As we discovered, there is very little difference: symbols are pictures, and pictures in
the models of science have tended to be minimal because of long-standing economic and
cultural constraints.

5.1 Assumption 1: A model shall be of one homogeneous type

This assumption was challenged in my 1991 Winter Simulation Conference paper on het-
erogeneous modeling, and then subsequently discussed in more detail later on. There is
a chapter on multimodeling in my 1995 book, Simulation Model Design and Execution. It
is an amazingly simple assumption, that heterogeneity is not only possible in model de-
sign, but valuable as well, given that different model types may capture the appropriate
semantics for different abstraction levels. Diversity in modeling is good.

5.2 Assumption 2: A model shall be static and not dynamic

Take a look a a finite state machine or even a multitrack based interface in your favorite
animation language, such as Flash. The model does not move or shake. The idea is to
cause the scene to be animated. The model structure doesn’t move, but the thing being
modeled does move. If you study a Petri net, for example, you realize that something
is going on in this type of model that doesn’t occur in many others: the model itself is
dynamic, and not only the system that is being modeled by it. The only real objection to
dynamic models is that they are not standard, which is an issue which we next address.
And still, by breaking the idea of static model design, we yield new model forms, in the
spirit of moving colored tokens in Petri nets, which are active. Components change shape,
position, and appearance over time. Dynamicism suggests looking at existing static mod-
els and asking what might happen if we injected life into them. Wouldn't that make
models more interesting, more informative, and less abstract? One interim result in this
confluence of model and object is that we came to realize that there is not much difference
between an object and a model of the object, just as there is not much difference between
a small miniature sailboat and its big-as-life bretheren. They are both objects; one object
serves to model another. This shatters the illusion that a model is an ethereal, mental crea-
ture and that the object is real, or that the two forms are fundamentally different. They are
the same. If I pick up a yellow tennis ball and claim that it is a scale model of our sun, this
explains a great deal, with the appropriate arm movements. There is nothing inherent
in either the tennis ball or sun that makes them models. The tennis ball can be used on
the court as well. Objects are not models by virtue of inherent structural characteristics.
They are models only when someone produces a set of rules, a metaphoric mapping, that
binds the source to the target. The arts have known this for a long time. The semioticians
from Peirce to Eco have also known this. We live in a world filled with signs, and by
connecting signs, we create meaning. We are just beginning to understand modeling, and
appreciate it, after being held back for so long with expensive computers and minimal
display elements. Too often, a sign or set of signs is misconstrued as “the real thing.”

5.3 Assumption 3: A model must conform to pre-defined standards

The issue of standards comes into play in modeling as it does for virtually every other
domain. If we make new model types, are we not destroying achievements made in stan-
dardization? There are many responses, the first being that standards, themselves, are
dynamic. They change over time, but they change very slowly. This slow change causes
potential problems for creativity and ground-breaking research, almost by definition. By
constraining a basic design, one gains conformity and perhaps some human performance,
but one also loses a considerable amount. And yet, standards, at some level are good and
necessary. It turns out that we can have both standards and creativity, side by side. The
Human-Computer Interface (HCI) domain is a perfect illustration of the issues. HCI is
about standards, but that sounded good when the goal was to create designs palatable to
the general populous. The rapid change in software and hardware economies are altering
the HCI landscape. Technologies allowing users to choose or design their own interfaces
are running rampant. Standards still exist, but at a lower level. Just as I can design my
car but with the knowledge that it will always have a steering wheel, a pedal, and an en-
gine, many other features are under my control. If I don’t care to create my own design, I
pick a default. The ”skinz” movement is similar, allowing users to choose default, “stan-
dard” skinz, create their own, or choose one from thousands of skinz artists. The key
point in HCI evolution is the democratization of the interface, rather than dictations pro-
nounced from “on high.” A recent special issue of Communications of the ACM (CACM)
promotes the “personalized interface” in computing, rather than one interface force-fed
to the masses. Marketing and advertising executives have known this all along, with the
goal being to ultimately target the individual if you want to sell your product.

Relating the HCI phenomenon to modeling is fairly straightforward. Consider that
modeling cultures have always existed, with standards being decided upon from the
ground-up, and not top-down. Thirty-year old modeling communities exist in force from
Petri nets, compartmental models, Bond Graphs, and System Dynamics to formalisms for
Discrete Event Systems, Control Block-Models, the “Unified Modeling Language (UML),”
and visual, multi-tiered finite state machines. Whereas the holy grail of physics suggests a
unified model, this goal achieves a foundational theory on top of which models are born.
Even in physics, numerous model types exist to aid scientists to mediate the boundary
between theory and phenomenon. The theory is generally construed to be very low level
and all-encompassing, whereas the domain of models is much larger and more varied.
The theory is generally taken to be a standard, until a new Kuhnian paradigm knocks it
from its pedestal.

54 Assumption 4: A model shall not have aesthetic properties

If you look at models for entertainment and art versus science, there is little doubt that
modeling representations have been largely dictated by the state of the economy. Jaron
Lanier once remarked (1989) that if virtual clothing had existed when language first de-
veloped, our languages would likely be much different than today. The idea is that any
society capable of creating virtual clothing could just as easily create anything. Imag-
ine the existence of a portable holographic display that could be positioned anywhere in
space between people in a group. How would this affect language? This brief thought
experiment causes one to question not only the adherence of our natural language to sym-
bols but also our modeling methods to symbols and primitive, Platonic-like circles, arcs
and rectangles. When one surveys the types of dynamic models that we have available,
we are still stuck in the valley of circles, with communities debating which type of circle
or rectangle should be connected to which other type. It is time to climb out from the
valley. As economy changes, and we can efficiently create pictures, 3D shapes, and 3D
audio with a wave of the hand, this is bound to have a profound affect on how we model.
While at first, this sounds like a lot of science fiction, technologies exist now that can help
us to achieve these goals.

Apart from the issue of scientists being couched in formalism and minimalist repre-
sentations since the first day at school, there is cause to wonder whether aesthetics has a
role to play in modeling, simulation and science. Our first contention is that the creation
of aesthetic forms does not mitigate the need for formalism. Instead, one can build layers
of interface on top of symbolically specified models in much the same way that compilers
are constructed on top of computer architectures. With the straightjacket of economy not
limiting us to symbolic and 2D models, we have lots more possibilities. The important
thing to recognize is that our economic conditions, and not idealist design criteria, have
dictated the minimalist form of our models. Can the “rate symbol” in System Dynamics
be represented as something beautiful? Can we use a 3D valve, complete with a texture
map and sound? The answers are in the affirmative if we can evolve beyond our min-
imalist modeling culture. Some personal observations of my own learning techniques
over the years have taught me that if I try to understand a methodology that I find intrin-
sically boring, I will have to re-read the book twenty times. I had one such occasion with
some simulated-related material that I felt I should know. The issue has little to do with
capacity for learning, in anyone’s case. The issue is capturing the interest and enjoyment
of the participant. Personal choice and aesthetics are very important to modeling. If I
enjoy something, it will affect my use of it, my cognition, and memory retention. Some
recent experimental evidence of this can be found in HCI, under the rubric of “aesthetics
for increased usability” (ref. Section 3 for a copy of this paper). Again, this should not
come as a surprise to us. Our children, who are steeped in game console culture, will have
little problem in relating to 3D virtual spaces. The only issue is whether we will have laid

a framework for this kind of modeling by the time they enter the workforce.

5.5 Assumption 5: Modeling should adopt object-oriented design principles

Object-oriented design (OOD) projects a paradigm onto the programmer and modeler.
OOD is defined by encapsulation within classes and instantiated objects, and inheritance.
We have found the most useful aspect of OOD is its metaphor toward the real-world,
at least for making computer programs easier to create. Problems arise when we con-
sider the previously challenged assumptions and try to rectify these with OOD. The main
problem is that modeling is inherently relational. The simple example of the tennis ball
and sun demonstrates this for scale modeling, but behavioral modeling is no different.
The tennis ball and Sun have the same object status, and the fact that one is modeling the
other is an imposed relationship between these two objects. Therefore, it does little good to
imagine that a behavioral model should be defined as a series of methods encapsulated
within an object. When models are made from abstract symbols, it can be imagined that
these symbols live inside the object. However, any surfacing of models into full-fledged
objects causes deep philosophical concerns with OOD. OOD, by itself, represents a good
set of design principles for programming, but the introduction of models suggests that we
create semantic networks among objects, with links defining the modeling relationship.
When we study the problem more deeply, we realize that attributes have similar prob-
lems to methods when it comes to modeling. For example, I can define a variable that
is a 2D array of integers, and make this variable an object attribute. So far, this sounds
logical, with the variable encapsulated, and made private, inside the object, only to be
modified by accessor methods. However, when surfacing the array as a scale model, which
it really is if we think about what it means to be an array, then we encounter problems. A
rectangular wooden case of mailboxes can model a farmer’s field, in general shape and
in cell-subdivision. But the field and the case are two independent objects. It makes little
sense to imagine one encapsulated by the other.

6 THE rube PROJECT

The name "“rube” is borrowed from Rube Goldberg, who constructed many fanciful car-
toon machines. While Rube’s machines are often referred to in a negative way for an
engineering project gone bad, the positive aspect of Rube’s work is that he created mem-
orable and entertaining models of dynamic systems. After looking at one of his cartoons,
it is ironic that you will better remember and reason about his machines than the sup-
posedly simpler machine designs not designed as “Rube Goldberg machines.” The area
of mnemonics, and its associated techniques, suggests that we create artificial 3D worlds
and spaces to better remember facts and figures, which tend to be boring and difficult to

digest. Surfacing abstractions in amusing ways help us to learn and remember.

It might not seem possible to reverse so many ingrained modeling assumptions
given today’s technology, but we happen to be at a critical juncture where several soft-
ware technologies have recently appeared to aid our modeling movement. To create the
sorts of challenging models we envision, I decided on the Virtual Reality Modeling Lan-
guage (VRML) as the web-ready framework for modeling dynamics. In this framework,
one can easily create 3D worlds and objects that represent both the model and modeled
system. VRML was designed with the web in mind, and so the concept of “repository”
becomes almost moot since VRML worlds of any size, down to single objects, can exist
anywhere over the web, and by virtue of Javascript and Java, can be executed on the client
machine. So, a simple repository is made possible through URL linkage. The key work in
our implementation was to derive a methodology for constructing these dynamic models
in a structured way, and to build a set of VRML Prototypes to make it easy for model-
ers to choose common dynamic model types in their multimodels. I have been active on
the next-generation VRML mailing lists to ensure that VRML2000 and X3D (which will
ultimately replace VRML) contain the right time and event models to support discrete
event and continuous simulation efforts. X3D stands for “Extensible 3D” and is struc-
tured completely in XML, which is the upcoming language of the web. The transitioning
from VRML to XML is natural and logical, as XML has many benefits for model design.
Our delivered software and methodology can be found under my home page under Re-
search = rube Project. Moreover, I have developed a large list of links for VRML and X3D
under Teaching=VRML links.

7 DISCOVERIES

Our primary discovery is that modeling, as a field, achieves many possibilities by chal-
lenging core assumptions. Model types from scale models to artistic models become uni-
fied once we strip away artificial barriers, such as minimalist form, and promote upcom-
ing movements directed toward the individual, and away from the general populace.
The technique that we have developed is appplicable to software engineering, as well as
system dynamics. Modeling has always been a way to build a structure in hopes of medi-
ating the gap between human and phenomenon. With new techologies at our beckoning,
the possibilities are limitless.

Despite our focus on VRML and X3D, we realized early on that it was not so much
that we were taking 2D models and representing them in 3D, but that we were changing
the fundamental structure of model components. The term we use for this ability to re-
structure components is gesthetics. By applying the principles of art to modeling, we are
able to not only proceed toward 3D, but to create more interesting 2D pieces. Once we re-
move the self-imposed shackles, and get rid of our green flow-chart template for making

circles and rectangles, we realize a more all-encompassing proscenium for our modeling
purposes.

8 EDUCATION

Our vision for modeling requires a different sort of computer scientist, one with a com-
bined knowledge of the arts and engineering. We have developed a set of curricula to
create this new student. Three programs exist within our department, Computer and
Information Science & Engineering (CISE), and two programs exist in Fine Arts. All pro-
grams go under the rubric Digital Arts & Sciences (DAS). The CISE program confers a
Degree of Enginecring with students taking required Engineering core classes in addition
to Fine Arts classes. The student achieves fluency in the arts and engineering. A detailed
curriculum attachment can be found in the third section of this report. The umbrella
construct that oversees these programs is called the Florida Digital Worlds Institute, and
the search for Director for this institute is underway. At first thought, the DAS students
would appear to be able to obtain positions in multimedia, entertainment, gaming, simu-
lation and scientific visualization; however, given the goal of aesthetic modeling, we see
this student as becoming the prototypical computer scientist for the 21st Century.

9 AIR FORCE APPLICATION

Modeling is used for training for air conflicts, strategy, and in the huge investments in-
volved in acquisition of hardware and software. Research and routine software develop-
ment needs to taken place to support Mé&S. While today’s mature software technologies
require immediate deployment and short-term time horizons, we must also demonstrate
methods and technologies that will dramatically change the face of M&S. Otherwise, the
military would have its own long-term strategic views dictated by today’s software mar-
ketplace. Our work in the rube Project is our contribution to this effort. Our goal is
not be so theoretical and philosophical that we produce no software, or create minor im-
provements in modeling. We are methodology and software builders. Our goal is to
define radically new modeling approaches that show tremendous potential over the next
decade.

10 KEY WEB SITES

o Fishwick’s Web Page: http://www.cise.ufl.edu/~fishwick

o rube Project Page: http:/ /www.cise.ufl.edu/~fishwick/rube

10

e VRML Links Page: http://www.cise.ufl.edu/~fishwick/vrml

o Digital Arts & Sciences Program: http://www.cise.ufl.edu/fdwi

11

Issues with Web-Publishable Digital Objects

P. A. Fishwick

Computer and Information Science and Engineering Department
University of Florida, Gainesville, FL 32611

ABSTRACT

Our goal is to promote the publication and standardization of digital objects stored on the web to enable model and
object reuse. A digital object is an electronic representation of a physical object, including models of the object.
There remain many challenges and issues regarding the representation and utilization of these objects, since it is not
clear, for example, who will create certain objects, who will maintain the objects, and what levels of abstraction will
be used in each object. This article introduces some of the technical and philosophical issues regarding digital object,
publication, with the aim of enumerating technical, sociological and financial problems to be addressed.

Keywords: Digital Object, Multimodeling, Model Abstraction, Object Orientation

1. INTRODUCTION

One of the most critical problems in the field of computer simulation today is the lack of published models and
physical objects within a medium—such as the World Wide Web—allowing such distribution. The web represents
the future of information sharing and exchange, and yet it is used primarily for the publication of documents since the
web adopts a “document /desktop metaphor” for knowledge. In the near future, we envision an “object metaphor”
where a document is one type of object. A web predicated on digital objects is much more flexible and requires a
knowledge in how to model physical phenomena at many different scales in space-time.

If a scientist or engineer (i.e., model author) works on a model, places the model inside objects, and constructs
a working simulation, this work occurs most often within a vacuum. Consider a scenario involving an internal
combustion engine in an automobile, where the engine is the physical object to be simulated. The model author’s
task is to simulate the engine given that a new engineering method, involving a change in fuel injection for example,
is to be tested. By testing the digital engine and fuel injection system using simulation, the author can determine the
potential shortfalls and benefits of the new technique. This task is a worthwhile one for simulation, and simulation
as a field has demonstrated its utility for objects such as engines.

Let’s analyze the problems inherent in this example. There is no particular location that will help the author
to create the geometry of the engine and its dynamics. It may be that other employees of the company have made
similar engine models in the past, and that these models may be partially reused. If this is the case, the model
author is fortunate, but even if such a company-internal model exists, it may not be represented in “model form”
(ref. Sec 3). There may be other model authors who have already constructed pieces that our model author could
use, but there if there is no reuse and no standard mechanism for publishing the model or engine object, then this
is all for naught. The model author may also be concerned with creating a fast simulation. While algorithms for
speeding simulations are important, by solving the reusability problem, we also partially solve the speed problem
since published quality models of engines will battle in the marketplace for digital parts, and the best engine models
and testing environments—involving very fast and efficient simulation algorithms-will win out in the end. Therefore,
the problem of reuse of engine objects and components lies at the heart of the simulationist’s dilemma. Fast, efficient
and quality models could be available at some point in the future, but today there is no infrastructure or agreed-upon
standards (ref. Sec. 11) for true digital object engineering.

Many of the issues surrounding digital objects and their representation can be resolved, at least partially, using
the physical metaphor. We ask a question such as Who will maintain a digital object? or Where is the digital
object located? and we obtain answers by phrasing the question within the corresponding physical domain, yielding
Who maintains the physical object? and Where are the physical objects created? The answers to the latter question

Other author information:Email: fishwick@cise.ufl.edu: Telephone: 352-392-1414; Tax: 352-392-1414; Supported by the U.S. Air
Force, GRCT, Incorporated, and by the ATLSS Project of the Department of the Interior.

12

suggests possible answers to the former. This is a simple technique, but fairly powerful in addressing many of the
issues that we will present. We will proceed to outline problems involving digital objects, first by defining them and
then continuing with issues that surround digital objects and their future. We hope that this paper can serve as a
starting point to debate some of these issues. Some issues were addressed in detail at a recent innaugural conference
on web-based modeling and simulation’*.

2. DIGITAL OBJECTS

Before enumerating the problems that will face the model author, we will state our goal, which is to provide a
representation for digital objects on the web. A “digital object” is the digital counterpart to the physical object.
Therefore, the digital object contains attributes and methods, where some of these will be models. Two prominent
models are the geometry model and the dynamic model since these models capture the shape and behavior of an
object. For the engine, we might publish a geometry model based on NURBS (Non-Uniform Rational B-Splines),
and for the dynamics, we might create a set of equations representing the transportation of gasoline through the
pipelines involved in fuel-injection. These two models are components of the specific engine object and could also be
components in an Engine class from which an engine object is created.

Who will initiate the process of storing digital objects? Where is the incentive? This is less of a technical
consideration and more a question of whether or not we should deliberate on digital objects. In the remainder of
the paper, we’ll present arguments for the deliberation issue. In terms of incentive to create digital objects, the
marketplace will play a key role. Those industries that plan to sell their products will find their sales increased if
they offer their customers an opportunity to test digital products prior to buying the real ones. Currently, some
companies on the web offer pictorial and technical specifications for their products, but these are not a complete
substitute for digital objects. We feel that the federal government will play a major role in the adoption of standards
and digital object proliferation. In particular, during DoD acquisition phases, a stipulation can be put in place where
vendors must deliver bids with an accompanying digital object specification.

For the remainder of the article we will often refer to different components such as models, objects and classes.
Objects can theoretically be defined without an associated class; however, it. is most useful to create a corresponding
class when creating any object. This fosters reuse and inheritance and makes it possible to create similar objects
from the class. Models reside inside classes and objects.

3. MODEL VERSUS CODE

In many cases, the model (defined as an abstract, and often visual, representation of the engine’s behavior), may
not be surfaced at all. Instead, there may be a large program whose simulation yields the object’s behavior. The
model author for the engine, once coding is complete, may speak of having generated a “model”, when in reality
there is no model except in the model author’s mind or sketched on a notepad. The cognitive, notepad-style, model
is what is required to be surfaced where it serves as the human-computer interface. In this sense, a “model” and a
“human-computer interface” are inseparable. The model serves as the interface which is compiled into target code
with which the author need not be concerned. Unfortunately, program code is not a good substitute for a model
even though it could potentially be seen as one in the extreme. The “model” must be abstract and must represent
a close match to the model author’s cognitive map of the engine. Programs tend to obscure these maps by focusing
on detailed semantics rather than a more abstract syntax. Most model authors tend to like visual representations of
phenomena, and the author of the engine model is no exception. Some of the models that the author will use will
be equational in representation, and other models will be graphical.

In addition to graphically oriented cognitive representations that require surfacing, it is also critically important
to have an underlying formal semantics for each model that can be accessed to resolve ambiguities and disputes. The
more abstract the representation, the more easily it can fall victim to issues involving semantics. So, it is necesssary
to maintain a chain of translation from high level abstract model to the semantics that are defined to a level of detail
so that execution of the model is unique and unambiguous.

* An online version of these proceedings is available through the web page http://wwu.cise.ufl.edu/~fishwick/webconf.html.

13

4. REUSABILITY AND SPEED

The author for the engine may find it frustrating to have to reinvent the wheel by constructing a new model. This is
where the expense of simulation raises its head. Simulation, as a method, is expensive because of the lack of available
digital objects and models that can be reused. While it is true that this particular author may have a new set of
questions to be asked of the model, the author could benefit from reuse with modification of the model to fit the
author’s specific questions to be answered from the simulation.

There is much research into the problems of speeding up model executions. The engine author may well wait
hours for results from the simulation. This is unfortunate and costly in terms of hours and machine time. As a
simulation community, we need fast algorithms, but without well-published digital objects and their component
models, the speed issue resolves problems for only one project and one model author. With published digital objects,
representing test environments for fast simulation, authors can spend less time worrying about speed and more time
focusing on model structure and design. The web-based marketplace of objects will be fundamental in solving the
speed problem just as the physical marketplaces does for the survival of only the most efficient objects.

What is to be reused? Certainly, objects will be reused Just as physical objects are reused in the form of “plug and
play” techiques used to construct everything from engines to houses. However, the models inside the objects should
be reused and the classes, from which many objects will be created, serve as a vehicle for reusability. Therefore,
reusable components are class, object and object structure in the form of individual models.

5. INTERFACE AND COUPLING

How might we mix and match components for an engine? Since the fuel injection delivery pipelines physically meet
the gasoline tank, the digital equivalents must perform a similar conjunction. The interface to a digital object must
be specified to ensure that the data types, at the very least, match. We let an object have three types of ports:
input, output, and input/output. Objects can connect to one another via these ports. A line that extends from port
3 on Object A to port 1 on Object B must carry the same type of signal, and the data structure associated with
the output on port 3/Object A must match the input on port 1/Object B. There may be additional constraints that
can be specified for minimizing problems. These constraints can be specified in a formal constraint language or the
language of predicate calculus.

6. AUTHORING AND MAINTENANCE

Who will create the digital objects? Should there be one repository for a specific type of object or should we
compete in the marketplace of objects with multiple authors? A reasonable strategy is to let the marketplace dictate
which authors are most successful. Some authors may be interested in their own particular object and internal
models, whereas others may have alternate motives (ref. Sec. 9). There are many potential strategies for locating
digital objects. One strategy suggests that digital objects be located where their physical object counterparts are
manufactured. Therefore, the author the company creating the automobile engine will create the digital automobile
engine, and the company making the piston rings will create the digital piston rings. We will term this strategy
developer-based colocation. Reuse can be created at every level so that even the engine author can reuse objects since it
is doubtful that all engine subcomponents are manufactured by the automobile company. While the developer-based
strategy is appropriate for engineered objects, we must concern ourselves with natural phenomena as well. What
about a representation of the Everglades National Park for ecological studies? The management-based colocation
strategy suggests that the Department of the Interior, which is responsible for this piece of land and its ecology, host
the site where the digital Everglades models? can be easily accessed. The Department of the Interior can likewise
create contracts for industries to compete for the right to carry the objects on their sites, or for a more generally
accessible site controlled by the Department. A more arbitrary approach suggests that digital objects can be located
physically anywhere on the web. Experts in automotive design at a University might host a site containing digital
engines or subcomponents.

7. MODEL ABSTRACTION, COMPLETENESS AND REUSE

Let’s say that our model author finds an engine that contains fuel injection geometry and dynamics. Is this particular
object appropriate for the model author’s simulation requirements and goals? This is a particularly acute problem
and onc that is central to many issues concerning digital objects. First, we must acknowledge that the author may

14

indeed find that the engine that he obtains on the web may answer a certain percentage of the questions he wants
answered, say 75%. Second, another engine may be available that is different from the first model, and yet contains
some extra model semantics which will allow for answering another 20% of the remaining questions. At first, it
may appear impossible to provide the functionality in a digital object that will satisfy everyone. This is true. No
single object will satisfy everyone, however, there are key considerations and steps toward meaningful digital objects.
First, we note that objects should be created, as in the physical world, with the ability to accept input while not
dictating the exact nature of that input. Finite element programs and programs based on Newtonian physics are
able to simulate a verv large class of system. This is because, for instance, forees that affect an object may come
from an infinite number of sources, but the source identity is not relevant. if the object’s input is a force or a vector
field of forces. The manifold for an automobile engine may be affected by a wide variety of physical objects, but the
identity of these objects does not affect the physics since one is concerned with an impressed, generalized force. The
manifold is unconcerned whether the applied force eminates from a person’s hand, a wrench or gas expansion. If this
invariance to input did not exist, today’s engineering software would be severely limited.

Through multiple inheritance, it is possible to inherit all necessary components to create a new hybrid class.
The model author, once finished with the simulation, may decide to publish this hybrid class, thereby augmenting
the base set of digital objects on the web. Dynamic models and methods incorporating finite element calculations
can be combined with point-mass calculations through multiple inheritance, and need not necessarily be located in
one monolithic class structure. Also, some of the models required may be located in fundamentally different objects
that have the similar methods to what is required. The broader the dynamic or geometric model, the greater the
possibility for the author to locate models instead of just objects that match the existing requirements. The author
may also find that he needs to create some new models that he cannot locate either in class, object or model form.
At the very least, the author has minimized wheel reinvention through a comprehensive search of the web for classes,
objects and components. There is also the option of accepting a component that answers all the critical questions
to the required level. There are conscious tradeoffs to be considered. We make these same tradeoffs when buying
physical objects that may solve most of our needs but not all of them.

Most objects will contain multiple abstraction levels. The abstraction levels presented may not exactly match
what is required, but through a search process and through reuse, we can create new levels if they are needed. It
is probably unrealistic to imagine that published digital objects will behave in every way, and at every abstraction
level, that the physical objects behave. This suggests that model authors who do publish objects be careful about
stating up front the constraints of their objects~what they can do and what their limitations are. Over time, and
given a free market for digital objects, we estimate that objects will improve over time to yield better and more
accurate results that appeal to greater numbers of model authors. Moreover, the taxonomy of objects in the form of
class hierarchies will iinprove in structure to maximize the benefits of aggregation and inheritance.

8. ACCESS

Given that the author of the engine needs to find objects and components, how is he to locate and access them?
The most straightforward idea is that model search can be seen as similar to text-based search in modern web search
engines. To find an engine, search for the keywords “automobile engine.” The result should be a conceptual model
consisting of classes and relations. The class from which a specific object is created can be highlighted and displayed
with its immediate class context. This is similar in concept to the way that Yehoo! organizes its subject taxonomy,
except that our tree is concept/class-based. Qther search methods include picture-based search and an immersive
3D-based search for objects.

Model repositories will contain class hierarchies and embedded geometry and dynamic models, and we envision
that model repositories will proliferate over the web to support the model author. Along with the need for repositories,
will be the need for model bases to support concurrent access, protected model information, querying and caching of
model structure. One of the most significant changes to accessing will be based on a new metaphor for the web based
on objects and classes, instead of on documents. Documents will still retain their importance, but will be viewed as
one type of physical object rather than as the overriding metaphor for representing all forms of information.

thttp://www.yahoo.com.

15

9. INTELLECTUAL PROPERTY AND ECONOMICS

If an author creates a digital engine object, then why should this author publish it? Isn’t there a conflict with
intellectual and industrial patent and copyright assumptions? And should the digital object be free or should a
company charge for the object? We see the need for both commercial and public-domain digital objects. This would
reflect the way that software is currently marketed over the web. A free version may be a “demo version” with the
full version being sold for profit.

Could a digital engine maker disclose company secrets? This key issue is not only a concern to industry, but to
all model builders. A model, and its enclosing object, reflects intellectual property similar to what is published in
a technical paper. There are two concerns that we can address. The first deals with industrial objects. Industrial
objects can be reverse engineered to see “what makes them tick.” Therefore, releasing a certain amount of information
in a published digital object may be reasonable given that it is information that can be easily obtained through other
means. However, the reverse engineering of hardware may be expensive in terms of equipment and time, and so the
manufacturer will want to ensurc that a similar cost is levied against the purchaser for the digital equivalent.

It it possible to publish public information while securing private information, so that an automobile engine’s
overall performance can be modeled without exposing the internals of the dynamics and the parameter estimates.
This can be done through “black box” approaches where the input-output behavior for a digital object is published,
but the internal structure is obscured. Moreover, a company can make it impossible to see any model structure
while allowing the model author to access the web site by providing input to its object. There is a wide range of
possibilities from allowing others to copy the digital object and all of its internal models, to allowing users to copy
only the highest level behavior, to allowing users to access only the behavior of the digital object without allowing
any structural model access. Ultimately, the practice of a free marketplace will drive down the cost of digital objects
and make them more accessible to everyone.

10. QUALITY CONTROL

What if the model author of the engine creates a digital engine that operates differently than the actual one? The
automobile company could provide full access to an invalid model. We must have quality control measures in place
to help us with this situation. The physical metaphor provides some help. Many consumer groups and institutions
exist to protect consumers from bad products. Digital products will require similar groups and testing procedures.
If a company knowingly markets a bad digital product, they will ultimately pay for this error in the marketplace.
The digital object must be treated with the same level of quality control as the physical counterpart. In some cases,
a company might make a mistake in production and a part or entire vehicle must be recalled. This type of recall
is made easier with the digital product. It behooves the model authors to create valid, quality objects. It may be
that anyone can publish a digital object but this is true of physical objects as well. The situation is somewhat more
acute with a digital automobile since to create an automobile in the first place, one must have invested a fair amount
of time and resources; however, a digital engine could be created by the neighbor down the street. One must learn
to trust certain sources more than others based on past performance of prior digital objects. Also, we must have
ways of verifying our sources, developers and producers with methods such as digital signatures, watermarks and
encryption.

11. EXISTING STANDARDS

Standards are what make the post-industrial revolution work. Without standards for digital objects, we will be in
the same situation as the rifle makers of the 19th century who made individual pieces without an assembly line or the
benefits of reuse. There are no current standards for digital objects; however, there are movements in this direction.

The Unified Modeling Language (UML? ®) is a potential standard for representing object oriented software
components, not necessarily physical systems. Due to its breadth in an attempt to address software in general,
it is missing dynamic and geometric specifications for physical objects. The basic approach in UML with visual
class structures is fruitful, however, and represents an excellent step in representing and visualizing class and object,
structure.

The High Level Architecture (HLAS), created by the Department of Defense, is a detailed specification supporting
distributed execution of simulation code. Code may be legacy code or could have been generated from models. What
is missing from HLA is any description of dynamic or geometric models. HLA’s focus is on tying together a set of

16

heterogeneous components, each of which may represent a physical simulator, personal computer or a simulation
with human participants. Therefore, reusability is at the code level for software components, without, an attempt to
provide a standard for create the software from models. Reuse of software is a tremendous help to those who are
looking for large-scale objects to plug into their simulations, but software reuse does not help the model author to
construct the dynamics of an object itself.

The VLSI Hardware Definition Language (VHDLT) is a structural and behavioral language for representing
integrated circuits. There is room in a VHDL specification for structure and layout as well as for behavior. It is
made specifically for electronic applications, and does not attempt a broader purpose. We can look at the benefits
and issues raised within the VHDL community to determine how these might affect digital object reusability beyond
the VLSI domain.

12. MOOSE? AND RELATED WORK

Our goal is to create a formal specification for digital objects with class hierarchies, objects, geometric and dynamic
models. There is no limitation as to the domain of application. The Multimodeling Object Oriented Simulation
Environment (MOOSE?) is a software implementation that accepts a specification in the form of a Distributed
Modeling Markup Language (DMML). We have created our own Conceptual Modeling Language (CML) and Dynamic
Modeling Language (DML) based on the multimodeling methodology, and we plan to use the Virtual Reality Markup
Language (VRML?) specification for the geometric models. Regarding CML, both the HLA Object Model Template
and UML class definitions suggest starting points for the CML grammar. Related work in the representation of
classes, objects and models has been done by several groups. For example, Hill'® focuses on the role of objects
for simulation. Also, Zeigler’s group® at the University of Arizona!'? and Mattsson¥ at the Lund Institute of
Technology in Sweden!3:!* have published widely in the area of object-oriented structures for simulation and control.

13. SUMMARY

If simulation is to make significant steps on the web, and in cost reduction, we need to move toward a digital object
view of knowledge. If we take our telescopes and try to look into the future of modeling, we might be put off by the
complexity of what lies ahead for digital objects. The idea that scientists and engineers will forever want to create
their own models and simulations, without the ability to plug-and-play with digital objects represents an unfortunate
situation. The model author might feel that no existing web objects can possibly match his requirements, however,
we have demonstrated concrete steps that can be taken to alleviate the problems of reuse. Reusing digital objects
may be a more profitable enterprise than for software components since digital objects bear a one-to-one relation
with their physical cousins, and these physical objects have been already demonstrated in the marketplace to have
real value. We feel that we must take proactive steps in making digital objects and their web-based representations
a reality if simulation is to progress as a field. Nothing will happen overnight, but we need to seek out the really
hard problems and then address them one by one.

ACKNOWLEDGMENTS

I would first like to thank all of the students who make MOOSE a reality. These students have contributed very
significant amounts of time toward the digital object methodology and its implementation. Robert Cubert, Gyooseok
Kim Youngsup Kim, and Kangsun Lee are all Ph.D. candidates—and core members comprising the MOOSE team—
in the CISE Department within the University of Florida. I would like to thank the following funding sources
that have contributed towards our study of modeling and implementation of the MOOSE multimodeling simulation
environment: GRCI Incorporated (Gregg Liming) and Rome Laboratory (Steve Farr) for web-based simulation
and modeling, as well as Rome Laboratory (Al Sisti) for multimodeling and model abstraction. We also thank
the Department of the Interior under a contract under the ATLSS Project (Don DeAngelis, University of Miami).
Without their help and encouragement, our research would not be possible.

inttp://wuw.cise.ufl.edu/~fishwick/moose.html.
YRef. http://wwu-ais.ece.arizona.edu/.
Inttp://wuv. control.lth.se/~cace/.

17

10.
11.

12.

13.

14.

REFERENCES

. P. A. Fishwick, D. R. C. Hill, and R. Smith, 1998 International Conference on Web-Based Modeling and
Simulation, Society for Computer Simulation International, San Diego, CA, 1998. 203pp.

. P. A. Fishwick, J. G. Sanderson, and W. F. Wolff, “A Multimodeling Basis for Across-Trophic-Level Ecosystem

Modcling: The Florida Everglades Example,” SCS Transactions on Simulation , 1997. To be published.

P-A. Muller, Instant UML, Wrox Press, Ltd., Olton, Birmingham, England, 1997.

R. C. Lee, UML and C++: A Practical Guide to Object-Oriented Development, Prentice Hall, 1997.

C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design, Prentice

Hall, 1998.

. “DoD High Level Architecture (HLA),” 1998. http://hla.dmso.mil/.

. J. Bhasker, A VHDL Primer: Revised Edition, Prentice Hall, 1995.

R. M. Cubert and P. A. Fishwick, “MOOSE: An Object-Oricented Multimodeling and Simulation Application

Framework,” Simulation , 1997. To be published.

. B. Roehl, J. Couch, C. Reed-Ballreich, T. Rohaly, and G. Brown, Late Night VRML 2.0 with Java, Zif-Davis

Development Group, 1997.

D. R. C. Hill, Object-Oriented Analysis and Simulation, Addison-Wesley, 1996.

B. P. Zeigler, Object Oriented Simulation with Hierarchical, Modular Models: Intelligent Agents and Endomor-

phic Systems, Academic Press, 1990.

B. P. Zeigler, Objects and Systems: Principled Design with Implementations in C++ and Java, Springer Verlag,

1997.

S. E. Mattsson and M. Andersson, “Omola—An Object-Oriented Modeling Language,” in Recent Advances

in Computer-Aided Control Systems Engincering, M. Jamshidi and C. J. Herget, cds., vol. 9 of Studies in

Automnation and Conirol, pp. 291 310, Elsevier Science Publishers, 1993.

S. E. Mattsson, “Towards a New Standard for Modelling and Simulation Tools,” in SIMS’93, Applied Simu-

lation in Industry —- Proceedings of the 35th SIMS Simulation Conference, T. Iversen, ed., pp. 1- 10, SIMS,

Scandinavian Simulation Socicty, ¢/o SINTEF Automatic Control, (Trondheim, Norway), June 1993. Invited

paper.

Aesthetic Programming

Paul A. Fishwick

Department of Computer & Information Science & Engineering
University of Florida
Gainesville, Florida 32611, U.S.A.
fishwick@cise.ufl.edu

September 8, 2000

Abstract

When we marry traditional methods for computer programming with an artistic
temperament, we give birth to a new phenomenon: the aesthetic program. Our work
builds on visual approaches in programming as well as modeling for software, where
we envision a gradual evolution from program to model. The need for the aesthetic
model is strengthened with the importance of personalized, individually-tailored,
models. We have formulated the rube Project methodology around the use of 3D web-
based virtual world construction of models. Initial results suggest that these models
are artistic, while containing sufficient symbolism and concise metaphoric mapping
as to be executable on a computer.

1 Introduction

The merger of computer programming and art usually manifests itself under the rubric of
terms such as algorithmic X, computer X, or digital X, where X is replaced by one of the
arts, such as art or music. This naming trend denotes a qualification of art, or more par-
ticularly, how art is modified as a result of computer technology. However, if we reverse
the word order to obtain “artistic computation,” we find a relative dearth of information,
with Sec. 4 overviewing the relevant literature. Software representations that lend them-
selves to an artistic representation tend to be minimalist and iconographic. More work
needs to be done in inculcating the importance of the arts inside of the metallic computer
box, and within the virtual spaces inhabiting the box. It’s not just necessary that the box,
monitor, and interaction devices be stylistic—we also need software that is aesthetic and
of considerable sensory appeal. It is only by doing so, that we can reinvent programming

19

to be more humane, and interestingly, to become closer to traditional engineering which
has historically managed to forge alliances with style, as in the field of architecture.

When one thinks of computer programs in their complex and cryptographic text-
based glory, the idea of aesthetics does not generally come to mind. Knuth [26] authored
a classic series of books entitled The Art of Programming, and later created an approach to
text-based software development termed literate programming[27], in which programmers
develop more readable programs that, in themselves, serve as complete textual, typeset
documentation. For the most part, software is text-based, and its typical incarnations
seem incongruous with the sorts of productions commonly found in fine art. Why are
programs limited to text, and what directions can we follow to pursue path of artistic
programs? To make software artistic, we need to endow software with some form of
aesthetics. We do not delve into the complexities of aesthetics other than to suggest that
an aesthetic direction implies one that yields art as a process and product. Rutsky [46]
asserts that in “high tech,” in which programming certainly finds a home, “technology
becomes much more a matter of representation, of aesthetics, of style.”

Aesthetic components and concepts are trying to make themselves known if the use
of metaphor and analogy is an indication. Computing and software incorporate numer-
ous metaphors [30, 29]. When we talk of program components, we speak of “looping
around a section,” “walking through code,” “piping X into Y,” “forking off processes (in
Unix),” and “calling a sub-routine.” Often, a mixed set of metaphors is loosely applied
at the level of natural language, without making them concrete. For example, in Unix
shells, one can pipe, fork, redirect and place jobs in the background. Little effort has been
made to formalize and visualize these metaphoric constructs, since to do so would in-
troduce extra overhead which was undoubtedly deemed prohibitively expensive when
Bell Labs first gave birth to Unix in the late 70s. Interfacing with text would have to suf-
fice. Most of these metaphors must live in the mental models [19] of their programmers’
minds since they are rarely surfaced in a visible manner. While mental models represent
important constructs, we should endeavor to free them from our minds, and to surface
them as real and virtual models, which have sensory and aesthetic qualities. Currently,
most programming metaphors are trapped inside complex software representations and
in individual mental models, which cannot easily be communicated. There are key as-
pects of software that rely on metaphor—namely, programming structures that have no
obvious real-world equivalent. For example, states and events are conceptual, and so re-
quire metaphor to clothe them in aesthetics. In a distributed system, one might represent
an ATM machine as something that looks similar to a real one, and yet ATM states and
events do not have transparent, concrete equivalents. Fortunately, this situation opens the
door to applying metaphor with a great deal of flexibility. A state can be a circle, sphere,
plot of land, architectural space, or a partition in space-time.

As with most new techniques, the creation of artistic software and computing finds
its first home in science fiction. In a November 1976 BBC episode of Dr. Who, enti-

20

tled “The Deadly Assassin,” the Doctor battles the Master in “the Matrix” which is a
repository for all Time Lord knowledge [12, 13]. Similar matrix centered novels detailed
the methods of cyberspace and virtual world manipulation, such as Gibson’s Neuro-
mancer [21] and Stephenson’s Snowcrash [50]. These ideas culminated recently in the
feature film “The Matrix”, written and directed by the Wachowski brothers. Perhaps the
longest running example of a matrix is found in the Holodeck of “Star Trek: The Next
Generation” by Paramount Pictures. The concept of program in these media projects hints
at programs as virtual objects and spaces, without there being anything formal or specific.
However, it is hard to imagine Java being integral to programming the Holodeck; the abil-
ity to easily and quickly create 3D spaces suggests an altogether different paradigm for
software development. Disney’s film “Tron” presaged, not only the idea of a communi-
cable, digital matrix, but more particularly, the virtual embodiment of aesthetic software.
Users were represented by people who were similar to avatars in today’s virtual space
and software agent terminology.

2 From Program to Model

Programs have differing levels of detail, and translation among levels. The lowest level
program is microcode. Continuing up the ladder of comprehensibility, we obtain assem-
bly language and then hundreds of programming languages. Table 1 is pseudo-code that
would easily map to one of these languages. This program is designed to allow people

Table 1: Algorithm for a Text Editor
Main program entry/exit screen displayed
If any key is pressed go to 3, otherwise go to 2
Enter text mode
Process text entered by user
If key ESC is pressed, goto 7
If key ~ M is pressed, go to 11, otherwise, go to 4
Enter conmand mode
Process commands entered by user
If key " X is pressed, go to 1
10: Ifkey Q is pressed, go to 3, otherwise go to 8
11: Enter macro mode
12: Process macro entered by user
13: Ifkey ENTER is pressed, go to 7, otherwise, go to 12

to edit text on a display monitor. This type of program is called a text editor. Emacs, vi,
and NotePad are example text editors. Our program design begins with a Main entry/exit

21

Figure 1: FSM with 4 states modeling a text editing program.

screen. From this screen, we transition into one of two modes: Text and Cmd (i.e., com-
mand). In text mode, the human enters text, as with a typewriter. In command mode, the
user enters commands as to what to do with the text, such as cut,copy, and paste. There
is a special Macro mode where a sequence of editing commands and data can be bound to
an arbitrary key. Keys are those commonly found on a keyboard: * M means control-M,
ESC references the escape key. Fig. 1 displays a two-dimensional graphic that represents
a Finite State Machine (FSM). Circles are states, and directed arcs are transitions from one
state to another based on conditions that are labeled adjacent to each arc. The machine
begins in the start state Main. The machine stays in Main until a key is pressed. Fig. 1 is
a model of the software in Table 1, with the term “model” being defined, typically, as a
visual representation of a program or system. Fig. 1 is a dynamic model [14] since its com-
ponents reflect the behavior of a system, as opposed to its physical or information-based
structure. To the extent that art targets human senses, Fig. 1 shows promise over Table 1,
and yet Fig. 1 yields a fairly iconic, diagrammatic display largely devoid of texture, sound
and aesthetic content. Fig. 1 is a common diagram for the computer scientist, and most
will recognize this form.

Figs 2(a) and 2(b) demonstrate two additional models for the editor software. The
mapping of state and transition in Fig. 2(a) is sufficiently close to Fig. 1 that the map-
ping may be intuitively grasped. However, Fig. 2(b) is somewhat different. A metaball
modeling approach was used to created oblong, directed spheres and a special welded
join when a bidirectional set of transitions exist between states text and cmd. A landscape
with towering butte-like structures is placed underneath the program, where each butte

22

serves to demarcate a state. In these models, there are some notable differences with re-

(a) 2D FSM (b) 3D FSM

Figure 2: 2D and 3D model designs for the text editor

spect to Fig. 1, which is a static form. Figs 2(a) and (b) are manifested as dynamic graphical
user interfaces so that not all information need be captured in a single perspective. By
using the mouse and keyboard, and general navigational methods, additional models are
viewed when interacting with the two models in Fig. 2. For example, in Fig. 2(a), the con-
necting lines change their width over time, designating the frequency of state transitions.
In Fig. 2(b), state names only appear in response to a “mouse-over” event on the states.

Fig. 1 fits within the culture and educational mindset of computer scientists, whereas new

metaphoric mappings must be learned for Fig. 2. Nevertheless, it is common in modeling
and programming for scientists to shop around for model types and metaphors and se-
lect the groups that best fit their cultural requirements. Modeling cliques are identifiable
by the conferences they hold and journals that they edit; the scientists become adapted
to a particular paradigm [28] to which they hold dear and find useful for their purposes.
There is no singular best modeling approach. Fishwick [14] defines numerous formalisms
and 2D designs for dynamic models.

Ugrankar [52] created a 3D architectural physical scale model of a virtual space de-
signed to encode a six-state FSM [14] that represents a dynamic model of water temper-
ature dynamics in response to heat conduction from a plate. The left-hand most 4 states
are identical in topology to Fig. 1, even though the semantics differ. This illustrates the

23

(a) Overhead view (b) Closeup sideview of states.

Figure 3: Architectural space for 6-state FSM.

powerful role of analogy in systems. Fig. 3(a) shows an overhead view of the model.
The model has cubical rooms and long corridors connecting rooms. The entire space is
divided horizontally by a glass pane. Rooms, representing states, are present on both
sides of the pane. Corridors on the top-half of the pane represent external state transi-
tions, whereas corridors on the underside are internal state transitions. For temperature
dynamics, internal transitions are those that occur because of a change of internal system
state (i.e., temperature reaching a value and thus indicating a phase boundary), whereas
external transitions occur due to causes external to the system (i.e., a knob being turned).
Fig. 3(b) shows a closeup illustrating metal ladder-like constructs denote reflexive tran-
sitions where the dynamics results in the same state given the appropriate conditions.
Conditions are marked with tape on each corridor. Avatars, that are not present in the
physical model and which represent signals into the system, move along the corridors.
This model was designed and created as a prototype for a virtual world using the Vir-
tual Reality Modeling Language (VRML), which is our primary design language for rube
worlds.

3 The rube Project

In 1998 at the University of Florida, our research group initiated a methodology called
rube [45, 16, 15], which helps modelers to construct models that incorporate aesthetics.

24

The models are used to both model physical phenomena as well as to design programs
designed via modeling. The following are the rube modeling steps:

1.

Choose system to be modeled: In the case of a modeling initiative, a system is ini-
tially specified. For example, we know that we must model two trophic levels in the
Everglades [17] if that is our physical target. In the case of software, there are two
sub-choices. The first is one where we have a distributed system, where the model
structure reflects the physical system component topology. The second choice is
where we have a program to create with no apparent objects. These two sub-choices
are usually part of the same software since even though a distributed system sug-
gests objects and models, large chunks of software will require innovative design
and frequent use of metaphor if we are to create models from them.

Select model types: We take the software and specify the formal dynamic model
types to be used. Dynamic model types are plentiful [14] and include automata,
Petri nets, data flow networks, scripts, rules, and event graphs. This is the formal
step of defining the nature of the dynamics in base model form—prior to exercising
our desire to employ metaphor and aesthetics.

Choose a style: Elements from the previous step must be mapped, via metaphor.
The style may be hierarchical. For example, the top level style could be architecture,
and the second level style to reflect a particular type of architecture such as Classic
Greek, Gaudi or Le Corbusier. If the style is painting, we could have Russian con-
structivist sketching or surrealistic painting in the style of Ernst, Dali or Magritte.

Define Mapping: Once we have defined a style, we must now carefully, and com-
pletely, create a mapping between the formal dynamic model type components and
the stylistic components. For example, a collage sub-element of Ernst would map to
a place of a Petri net if we had chosen the Petri net as our model type. It is critical to
pay special attention in ensuring that the mapping preserves the full capacity of the
formal dynamic model, otherwise the model will not be executable.

. Create Model: This is the craft-worthy step of applying the mapping to create the

model.

Regarding model-creation from programs, we now address the question of what pro-

grams are modeling. In the case of program construction for distributed systems, models
are created of the objects and network composing the system. In the case of the non-
distributed, ordinary program, we are free to create maps using the above methodology,
by starting with model types. Here are some guidelines based on programming elements:

25

® Sequence: Open path in space-time. Examples: (1) entity movement across paper
following arc; (2) path through building; (3) evolution of entity or space over pas-
sage of time.

e Condition: Branch in space-time. Examples: (1) fork in a road; (2) portals leading
from a room; (3) plant and tree branching.

e Iteration: Closed path in space-time. Examples: (1) race track; (2) closed circuit on a
landscape.

e Hierarchy: Space-time hierarchy. Examples: (1) Scaling in space-time using physi-
cal encapsulation; (2) Positioning levels spatially via horizontal or vertical displace-
ment.

® Recursion: Self-referential Space-time hierarchy. Examples: (1) Zooming in and out
of a point in space, or inside of an entity to find smaller, self-similar entities.

* Assignment, Input and Output: Human interaction using a sensor or tool. Examples:
(1) measuring an entity; (2) using a tool to shape or color an entity.

These guidelines are meant to be very general. We have just begun to explore ap-
proaches to mapping software to physical phenomena, therefore, these guidelines are
purely heuristic in value. The categories reflect basic mathematical categories as well
as broadly defined cognitive partitions, similar to those described by Arnheim [2, 3],
Volk [55], and Ching [10]. They also roughly correspond to principles in programming
languages [20]. Space-time is a multidimensional space with an orthogonal time axis, as
in physics. Iteration and recursion are generally coupled with sequence and condition,
and should be mixed where appropriate. One such example involves creating a hierarchy
where loops are present, so that where a loop is located, a hierarchy is created through
an encapsulating object. Consider a routine sorting or searching task, which tend to be
highly iterative. Such a task can be wrapped into a physical machine that reminds us of
the task. This wrapping represents the introduction of hierarchy.

Hopkins et al. [23] constructed an operating system kernel using VRML. An operat-
ing system is one of the largest pieces of software in the typical computer. It controls all
peripherals and resources, allowing tasks to request resources, obtain service, and con-
tinue processing. A simplification of an operating system is where we model the average
task (i.e., executable program) as requesting the Central Processing Unit (CPU), and then
requesting a resource such as I/O or memory, and then iterating in this fashion until the
program terminates. We employ a metaphor based on business workflow where tasks,
represented as human agents, move on the floor of a building but stay within the bound-
aries of assigned tracks. This is not unlike waiting lines with guide posts and ropes, or
colored strips placed on an airport floor, as a means of partitioning waiting lines. Our

26

example task scheduler [23] is a non-preemptive, dynamic priority scheduling system
that contains tasks, four priority queues, and the following five types of physical de-
vices with their associated queues: 1) CPU, 2) DEV (i.e., external device), 3) COM (i.e.,
communication, such as via the parallel, serial, and USB ports), 4) MEM (i.e., memory
load/store), and 5) I/O (i.e., input/output, such as disk read/write). By employing a
workflow metaphor, we map a task to a person and a device to a “service facility,” which
is a person behind a desk (see Fig. 4(d)). The priority and device queues map directly to
physical space as waiting lines. Persons can travel over paths between the devices and
queues.

Fig. 4 displays different angles of the VRML world created with the [45] methodol-
ogy. Fig. 4(a) starts us outside of the Operating System, which is constructed as an art
deco building. On one of the floors, we find the task scheduling “workflow” identified
by moving agents (see Figs. 4(b) through 4(d)). We are now concerned with the details of
implementing the above task scheduler along with its metaphors in a three-dimensional
environment. In the context of VRML, we create prototype (PROTO) nodes for each of
the reusable items.

4 Related Work

The Unified Modeling Language (UML) [6] represents a good beginning in viewing soft-
ware as modeling, but this view centers around software engineering, rather than pro-
gramming. Programming is typically viewed as a low-level activity underneath the um-
brella of software engineering. This view should change if we are to more clearly rep-
resent programs as models, while relegating textual programs to the status currently oc-
cupied by assembly language—a necessary, but low level construct. Many languages
targeted at novices [40] are model-based. The Logo language [41] was one of the first
languages based on the idea of programming through the use of a turtle [1, 44] capable
of carrying out a set of simple instructions, with graphical feedback for output. Karel
the Robot [42] has similar aims with a robot replacing the turtle with a robot, and by
extending the functionality of the moving agent with respect to its interaction environ-
ment. Methods of programming by demonstration or example [32, 11] are structured
on agent and rule-based approaches to software development. The idea is to program
through modeling, and where there may not be a natural physical object in a program, a
microworld can be created so that the programmer benefits from thinking in terms that
are natural, memorable, and aesthetic rather than artificial, arcane and ugly. Several com-
mercial products exist, such as Stagecast [48], which allow modelers to create simula-
tions using graphically-specified production rules. Modeling is the activity that allows
humans to better reason about programs. The overall areas of software visualization [49]
and visual programming [24] have produced many similar successes to those of program-

27

T \ecute
Paths On°Oft

(a) View of operating system.

" DEV weight [
CON wesght |
COM weght |
MEM welght

10 weight DOy

(b) Isometric view of operating system task
scheduling.

D

-3

agln
h

10 weight L{”
1O waight DO

(c) Overhead view of Fig. 4(b).

A et b

(d) Snapshot and zoom of CPU in action.

Figure 4: Views of the the operating system from outside and on the task scheduling floor.

28

ming by modeling, example and demonstration. There are areas where the importance of
visualization and sensory-feedback are stressed, such as Human-Computer Interaction
(HCI) and Visualization. In HCI, we obtain example research involving visualizing in-
formation [8] and texts on interface methodology [38, 37, 43]. Employing visualization
and metaphors permits the human to better interact with the computer. For visualiza-
tion, there has been significant work in visualizing data, program execution and soft-
ware. Data visualization is, perhaps, the most active field where scientific and engineering
data are viewed from multiple perspectives, in 2D and 3D, using a wide variety of icons
and color range. Brown [7] discusses methods for visualizing the execution of programs
in terms of input/output. Shu [47] specifies a dichotomy where we have visual environ-
ments, referring to program and data visualization, versus visual language, referring to the
actual creation of software using visual methods. Early visual software developments
were catalogued in an edited volume by Chang [9] and recently in a special issue of Com-
munications of the ACM [32] on “programming by example” where the goal is to make
programming easier through simulation and demonstration via rules.

A quick search through the literature on keywords “3D” and “programming” tends
to sprout forth numerous articles and books on how to render 3D graphics. By turning
this idea on its head, we imagine that 3D itself is used to do the programming, rather
than vice versa. The area of 3D program structure is closely related research to ours and
represents a relatively new area that holds much promise, especially with new 3D web-
based technologies such as Java3D and VRML. Programming in 3D had to wait for effi-
cient methods for 3D programming, but significant work has been done. Lieberman [31]
pioneered one of the first efforts in transitioning from 2D programming to using 3D el-
ements. Najork [36] created the Cube language, with cubes representing program nodes
and pipes for flow. Oshiba and Tanaka [39] built 3D-PP, which contains regular polyhedra
connected with lines for representing declarative, logic-based programs.

In reviewing algorithmic art, representing the former concept of software creating art,
there are many players. Cohen’s AARON [34] was a system for semi-automatic genera-
tion of paintings. Verostko [54] discusses the interrelationships beteween art and software
from the standpoint of one (programming) being used to create the other (art). In an essay
called Programming as Art [53], Verostko states “As we shall see, an algorithm may be an
instruction for any kind of procedure. For the artist or composer this means that any kind
of algorithmic inquiry on the nature of form is possible.” The artist uses the computer
program as any other tool. More mechanical, and less organic, procedures for creating
art and form also exist [51, 35]. These formal methods tend to capture pattern-based gen-
eration of art using tools familiar to the computer scientist, such as production rules and
automata. Maeda’s Aesthetics + Computation Group [22] focuses on interactive demon-
strations of this bridge area, often using Java applets for the underlying technology [33].
Gelernter [18] presents cogent arguments for alternate, and beautiful, representations for
machines and computing. The emphases on HCI and software visualization, with a focus

29

on the human interface, strikes a common chord with art. Differences come about mainly
in the degree of creativity and metaphor employment afforded. An approach to visual-
izing arbitrary data or programs may involve a color landscape, but rarely does one see
a rich landscape filled with color and texture. There is an element of artistic minimalism
in these approaches, and this is in line with similar concerns in graphic design [5], which
are driven primarily by efficiency.

5 Summary

Today’s program in Java or C++ bears little resemblance to Fig. 4, and there are good
reasons for this condition. Even though the state of the art, and information economy,
fertilize the roots for ubiquitous 3D development, we have many legacy codes and tools,
and the tools are nowhere near the point of general acceptance for aesthetic programming.
A lot of further research is required, along with a gameplan for getting from A to B. Our
work depends on a modeling framework, and even though significant efforts such as
UML exist, free tools are not available as they are for Java, C and C++.

As if the problems of using graphical methods in programming were not enough,
we also have an issue in education of computer science students who grow up with text-
based programming. Making the leap from fairly minimalistic, diagrammatic models and
code to representations that encourage massive infusions of art is not going to be easy.
The educational challenges are paramount, and represent a cultural gap for most com-
puter scientists who view artistic representations as flourishing, syntactically excessive,
and luxurious. The cost of convincing visual and auditory renderings is ever-decreasing,
causing a revolution in the way that future generations expect to interact with the world.
The cultures must be bridged and connected if aesthetic software is to succeed. In prepa-
ration for the game-console generation to enter University, and for their expectations of
immersive environments, at the University of Florida we have created a new set of en-
gineering programs in unison with our College of Fine Arts. These programs are called
Digital Arts and Science [4] (DAS), and their aim is to educate a new breed of student
who is as familiar with sketching, textures, sculpture, form and music as they are with
data structures, discrete math, and translation theory. Our vision is that these students
will have the aesthetic sensibilities to take advantage of the rapid technologies that now
support fast 2D /3D graphics and audio.

Even though we began our studies with model construction with an extra dimen-
sion, it became increasingly clear that the primary thrust of this work was in aesthetics,
since one can equally construct flat models that have meaningful and desirable quali-
ties. Our modeling examples are still primitive, and no doubt professional artists can
weave far greater patterns. Even when we consider 3D programming, work has been
done before in this area, but what remains to be done for the future is tantamount to

30

a renaissance in modeling—to free models, not just from flatland, but also from simple
geometries. Much of the work in 3D programming languages, for example, implements
3D iconography, which needs to evolve into landscapes, cities, organic systems, physical
architectures, and style-guided formations if the very idea of aesthetics is to take hold—
the point being that it does matter whether one uses a octagonal polyhedron versus an
art deco house. One is aesthetically-challenged and Platonic whereas the other promotes
familiar sensory appeal.

The study of aesthetic models in the representation of computer programs represents
a small potential when compared with the more encompassing subject area of computer
science. Models are used frequently in most sub-areas: databases, machine organization,
organization and architecture, data and program structures, and artificial intelligence.
These areas will all benefit from direct artistic influence. The same approach to aestheti-
cism can be applied to other art forms, such as storytelling and theatre. Stories can be
mapped onto model structures, and serve to entertain as well as to educate and remind
us about the target system. Our implementation on models for aesthetic computing is
directly inline with Alan Kay’s definition of computer literacy [25]:

“Computer literacy is a contact with the activity of computing deep enough to
make the computational equivalent of reading and writing fluent and enjoy-
able. As in all the arts, a romance with the material must be well under way. If
we value the lifelong learning of arts and letters as a springboard for personal
and societal growth, should any less effort be spent to make computing a part
of our lives?”

Acknowledgments

I am indebted to my students and sponsors. I would like to thank students, past and
present, for their continued efforts in rube: Robert Cubert, Andrew Reddish, John Hop-
kins, and Linda Dance. I would also like to thank research sponsors of our modeling
and simulation work: Air Force/Rome Laboratory (contract: F30602-98-C-0269) and the
Department of the Interior (grant 14-45-0009-1544-154).

References

[1] Harold Abelson and Andrea diSessa. Turtle Geometry. MIT Press, 1980.

[2] Rudolf Arnheim. Visual Thinking. London, Faber and Faber, 1969.

[3] Rudolf Arnheim. The Dynamics of Architectural Form. University of California Press,
1977.

31

[4] Digital Arts and Science Programs. http:/ /www.cise.ufl.edu/fdwi, 1999.

[5] Jacques Bertin. Semiology of Graphics: Diagrams, Networks, Maps. University of Wis-
consin Press, 1983.

[6] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

[7] Marc H. Brown. Algorithm Animation. MIT Press, 1987.

[8] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in Information
Visualization: Using Vision to Think. Morgan Kaufman, 1999.

[9] Shi-Kuo Chang, editor. Visual Languages and Visual Programming. Plenum Press, 1990.

[10] Francis D. K. Ching. Architecture: Form, Space and Order. Van Nostrand Reinhold Co.,
1979.

[11] Allen Cypher, Daniel C. Halbert, David Kurlander, and Ellen Cypher, editors. Watch
What I Do: Programming by Demonstration. MIT Press, 1993.

[12] Terrance Dicks. Doctor Who and the Deadly Assassin. British Broadcasting Corporation,
1977.

[13] The Deadly Assassin. Doctor Who Magazine, (108):44-47, January 1986.

[14] Paul A. Fishwick. Simulation Model Design and Execution: Building Digital Worlds.
Prentice Hall, 1995.

[15] Paul A. Fishwick. A Modeling Strategy for the NASA Intelligent Synthesis Environ-
ment. Journal of Space Mission Architecture (JSMA), (1):23—42, 1999. Center for Space
Mission Architecture and Design, Jet Propulsion Laboratory.

[16] Paul A. Fishwick. 3D Behavioral Model Design for Simulation and Software Engi-
neering. In 2000 Web3D/VRML Conference, pages 7-16, February 2000.

[17] Paul A. Fishwick, James G. Sanderson, and Wilfried F. Wolff. A Multimodeling Ba-
sis for Across-Trophic-Level Ecosystem Modeling: The Florida Everglades Example.
SCS Transactions on Simulation, 15(2):76-89, June 1998.

[18] David Gelernter. Machine Beauty: Elegance and The Heart of Technology. Basic Books,
1998.

[19] Dedre Gentner and Albert Stevens. Mental Models. Lawrence Erlbaum Associates,
Hillsdale, New Jersey, 1983.

32

[20] Carlo Ghezzi and Mehdi Jazayeri. Programming Language Concepts. John Wiley, sec-
ond edition, 1987.

[21] William Gibson. Neuromancer. Ace Books, 1984.
[22] Aesthetics + Computation Group. http:/ /acg.media.mit.edu/.

[23] John E. Hopkins and Paul A. Fishwick. Synthetic Human Agents for Modeling and
Simulation. Proceedings of the IEEE, 2000. Submitted for publication.

[24] Tadao Ichikawa, Erland Jungert, and Robert R. Korfhage, editors. Visual Languages
and Applications. Plenum Press, New York, 1990.

[25] Alan Kay. Computer Software. Scientific American, 251(3):53-59, September 1984.
[26] Donald Knuth. The Art of Programming: Volumes 1 to 3. Addison-Wesley, 1968.

[27] Donald Knuth. Literate Programming. Stanford University Center for the Study of
Language and Information (Lecture Notes, No. 27), 1992.

[28] Thomas Kuhn. The Structure of Scientific Revolutions. University of Chicago Press, 3rd
edition, 1996.

[29] George Lakoff. Women, Fire, and Dangerous Things: What Categories Reveal about the
Mind. University of Chicago Press, 1987.

[30] George Lakoff and Mark Johnson. Metaphors we Live By. University of Chicago Press,
1980.

[31] Henry Lieberman. A Three-Dimensional Representation for Program Execution. In
E. P. Glinert, editor, Visual Programming Environments: Applications and Issues. IEEE
Press, 1991.

[32] Henry Lieberman. Programming by Example. Communications of the ACM, 43(3):73—
74, March 2000.

[33] John Maeda. Design by Numbers. MIT Press, 1999.

[34] Pamela McCorduck. Aaron’s Code: Meta-art, Artificial in telligence and the Work of Harold
Cohen. W. H. Freeman, 1991.

[35] William Mitchell. The Logic of Architecture: Design, Computation and Cognition. MIT
Press, 1990.

[36] Marc Najork. Programming in Three Dimensions. Journal of Visual Languages and
Computing, 7(2):219-242, June 1996.

33

[37] Jakob Nielsen. Usability Engineering. Morgan Kaufman, 1993.
[38] Donald A. Norman. The Design of Everyday Things. Doubleday Books, 1990.

[39] Takashi Oshiba and Jiro Tanaka. 3D-PP: Visual Programming System with Three-
Dimensional Representation. In International Symposium on Future Software Technology
(ISFST '99), pages 61-66, 1999. -

[40] John F. Pane and Brad A. Myers. Usability issues in the design of novice program-
ming systems. Technical report, Carnegie Mellon University, 1996. Report CMU-CS-
96-132, http:/ /www.cs.cmu.edu/~pane/ftp / CMU-CS-96-132.pdf.

[41] Seymour Papert. Children, Computers and Powerful Ideas. Basic Books, New York,
1980.

[42] Richard E. Pattis, Jim Roberts, and Mark Stehlik. Karel the Robot: A Gentle Introduction
to the Art of Programming. John Wiley and Sons, 1994.

[43] Jef Raskin. The Humane Interface. Adisson-Wesley, 2000.

[44] Mitchel Resnick. Turtles, Termites and Traffic Jams: Exporations in Massively Parallel
Microworlds. MIT Press, 1997.

[45] rube Project. http://www.cise.ufl.edu/~fishwick/rube, 1998.

[46] R. L. Rutsky. High Techne: Art and Technology from the Machine Aesthetic to the Posthu-
man. University of Minnesota Press, 1999.

[47] Nan C. Shu. Visual Programming. Van Nostrand Reinhold Company, 1988.
[48] Stagecast Software. http:/ /www.stagecast.com.

[49] John Stasko, John Domingue, Marc H. Brown, and Blaine A. Price, editors. Software
Visualization: Programming as a Multimedia Experience. MIT Press, 1998.

[50] Neil Stephenson. Snowcrash. Spectra Books, 1993.

[51] George Stiny and James Gips. Algorithmic Aesthetics: Computer Models for Criticism
and Design in the Arts. University of California Press, 1978.

[52] Prajakta Ugrankar. Finite State Automaton for Boiling Water Multimodel, May 2000.
Independent Study (University of Florida).

[53] Roman Verostko. http:/ /www.verostko.com.

[54] Roman Verostko. Epigenetic Painting. Leonardo, 23(1):17-23, 1990.

[55] Tyler Volk. Metapatterns: Across Space, Time and Mind. Columbia University Press,
1995.

34

3D Behavioral Model Design for Simulation and Software Engineering*

Paul A. Fishwick

University of Florida

November 24, 1999

Abstract

Modeling is used to build structures that serve as
surrogates for other objects. As children, we learn to
model at a very young age. An object such as a small
toy train teaches us about the structure and behavior
of an actual train. VRML is a file standard for repre-
senting the structure of objects such as trains, while
the behavior would be represented in a computer lan-
guage such as ECMAScript or Java. VRML is an ab-
breviation for Virtual Reality Modeling Language [2],
which represents the standard 3D language for the
web. Our work is to extend the power of VRML so
that it is used not only for defining shape models, but
also for creating structures for behavior. “Behavior
shapes” are built using metaphors mapped onto well-
known dynamic model templates such as finite state
machines, functional block models and Petri nets.
The low level functionality of the design still requires
a traditional programming language, but this level
is hidden underneath a modeling level that is visual-
ized by the user. We have constructed a methodol-
ogy called rube which provides guidelines on building
behavioral structures in VRML. The result of our en-
deavors has yielded a set of VRML Prototypes that
serve as dynamic model templates. We demonstrate
several examples of behaviors using primitive shape
and architectural metaphors.

1 INTRODUCTION

One physical object captures some information about
another object. If we think about our plastic toys,
metal trains and even our sophisticated scale-based
engineering models, we see a common thread: to
build one object that says something about another—
usually larger and more expensive—object. Let’s call
these objects the source object and the target object.
Similar object definitions can be found in the litera-
ture of metaphors [6] and semiotics [10]. The source

*Department of Computer & Information Science and En-
gineering, P.O. Box 116120, Gainesville, FL 32611, Email:
fishwick@cise.ufl.edu

object models the target, and so, modeling represents
a relation between objects. Often, the source object
is termed the model of the target. We have been dis-
cussing scale models identified by the source and tar-
get having roughly proportional geometries. Scale-
based models often suffer from the problem where
changing the scale of a thing affects more than just
the geometry. It also affects the fundamental laws
applied at each scale. For example, the hydrodynam-
ics of the scaled ocean model may be different than
for the real ocean. Nevertheless, we can attempt to
adjust for the scaling problems and proceed to un-
derstand the larger universe through a smaller, more
manipulable, version.

Our task is to construct a software architecture
that encourages 3D construction of objects and their
models. Our focal point is the behavioral model where
one defines the behavior or dynamics of an object
using another set of objects. This sort of modeling
may be used in representing the models of large-scale
systems and software in the case where models have
been used to specify the requirements and program
design [1, 11]. We call this modeling architecture
rube. An example use of rube is defined in the Sec. 2,
and the methodology of rube in Sec. 3. Facets of the
VRML implementation are defined in Secs. 4, 5 and
6. We close the paper with philosophical issues on the
art of modeling in Sec. 7 and the summary in Sec. 8.

2 NEWELL’S TEAPOT

In the early days of computer graphics (¢. 1974-75),
Martin Newell rendered a unique set of Bézier surface
spline patches for an ordinary teapot, which currently
resides in the Computer Museum in Boston. The
teapot was modeled by Jim Blinn and then rendered
by Martin Newell and Ed Catmull at the University
of Utah in 1974. While at this late date, the teapot
may seem quaint, it has been used over the years as
an icon of sorts, and more importantly as a bench-
mark for all variety of new techniques in rendering
and modeling in computer graphics. The Teapot was
recently an official emblem of the 25th anniversary

35

Figure 1: Office scene with Newell Teapot, dynamic
model and props.

of the ACM Special Interest Interest Group on Com-
puter Graphics (SIGGRAPH).

Since 1989 at the University of Florida, we have
constructed a number of modeling and simulation
packages documented in {4, 3] In late 1998, we started
designing rube, named in dedication to Rube Gold-
berg [8], who produced many fanciful cartoon ma-
chines, all of which can be considered models of be-
havior. One of our goals for rube was to recognize that
the Teapot could be used to generate another poten-
tial benchmark—one that captured the entire teapot,
its contents and its models. The default teapot has no
behavior and has no contents; it is an elegant piece of
geometry but it requires more if we are to construct
a fully digital teapot that captures a more complete
set of knowledge. In its current state, the teapot is
analogous to a building fagade on a Hollywood film
studio backlot; it has the shape but the whole entity
is missing. In VRML, using the methodology previ-
ously defined, we built TeaWorld in Fig. 1. We have
added extra props so that the teapot can be visual-
ized, along with its behavioral model, in a reasonable
contextual setting. The world is rendered in Fig. 1
using a web browser. World is the top-most root of
the scene graph. It contains a Clock, Boiling_System,
and other objects such as the desk, chairs, floor and
walls. The key fields in Fig. 2 are VRML nodes of the
relevant field so that the contains field refers to mul-
tiple nodes for its value. This is accomplished using
the VRML MFNode type. The hierarchical VRML
scene graph for Fig. 1 is illustrated in Fig. 2. The
scene contains walls, a desk, chair and a floor for
context. On the desk to the left is the teapot which
is filled with water. The knob controlling whether
the teapot heating element {not modeled) is on or off
is located in front of the teapot. To the right of the
teapot, there is a pipeline with three machines, each
of which appears in Fig. 1 as a semi-transparent cube.,

World

A\ A\ Y \ 4 A\
Clock 2goiling_System Furniture Floor Walls
A\
contains -
A\ 4 > v A4
Pipeline Knob Water Thermometer
A4
functions ‘be ibe be

. ; Y
MXcine yachineQ %achine(!
‘be

Y
Piant
Y

dvY AY A\
Tank1 Tank3 Pipe1 f‘ipe(!
A\ A v
Tank2 » Pipe2 4 Piped
be:
be' be'

Y Y
Ciock »Board1 Board3
A

v
-y Board2

Figure 2: VRML Scene Graph for the Teapot and its
models.

Each of these machines reflects the functional behav-
ior of its encapsulating object: Machinel for Knob,
Machine2 for Water and Machine3 for Thermometer.
The Thermometer is a digital one that is positioned
in Machine3, and is initialized to an arbitrary ambi-
ent temperature of 0° C. Inside Machine2, we find a
more detailed description of the behavior of the wa-
ter as it changes its temperature as a result of the
knob turning. The plant inside Machine2 consists of
Tankl, Tank2, Tanks3, and four pipes that move infor-
mation from one tank to the next. Inside each tank,
we find a blackboard on which is drawn a differential
equation that defines the change in water tempera-
ture for that particular state. The following model-
ing relationships are used: Pipeline is a Functional
Block Mode! (FBM), with three functions (i.e., ma-
chines); Machine is a function (i.e., semi-transparent
cube) within an FBM; Plant is a Finite State Machine
(FSM) inside of Machine 2; Tank is a state within a
FSM, and represented by a red sphere; Pipe is a tran-
sition within a FSM, and represented by a green pipe
with an attached cone denoting direction of control
flow; and Board is a differential equation, represented
as white text. The following metaphors are defined in
this example. The three cubes represent a sequence
of machines that create a pipeline. One could have
easily chosen a factory floor sequence of numerically
controlled machines from the web and then used this

36

Figure 3: Pipeline closeup.

in TeaWorld to capture the information flow. Inside
the second machine, we find a plant, not unlike a
petroleum refinery with tanks and pipes.

The Pipeline and its components represent phys-
ical objects that can be acquired from the web.
For our example, we show simple objects but they
have been given meaningful real-world application-
oriented names to enforce the view that one ob-
ject models another and that we can use the web
for searching and using objects for radically differ-
ent purposes than their proposed original function.
The overriding concern with this exercise is to per-
mit the modeler the freedom to choose any object
to model any behavior. The challenge is to choose a
set of objects that provide metaphors that are mean-
ingful to the modeler. In many cases, it is essen-
tial that more than one individual understand the
metaphorical mappings and so consensus must be
reached during the process. Such consensus occurs
routinely in science and in modeling when new mod-
eling paradigms evolve. The purpose of rube is not
to dictate one model type over another, but to allow
the modelers freedom in creating their own model
types. In this sense, rube can be considered a meta-
level modeling methodology.

The simulation of the VRML scene shown in
Fig. 2 proceeds using the dashed line thread that be-
gins with the Clock. The clock has an internal time
sensor that controls the VRML time. The thread cor-
responds closely with the routing structure built for
this model. It starts at Clock and proceeds downward
through all behavioral models. Within each behav-
ioral model, routes exist to match the topology of
the model. Therefore, Machinel sends information
to Machine2, which accesses a lower level of abstrac-
tion and sends its output to Machine3, completing
the semantics for the FBM. The FSM level contains
routes from each state to its outgoing transitions.

Fig. 3 shows a closeup view of the pipeline, that
represents the dynamics of the water, beginning with
the effect of turning of the knob and ending with
the thermometer that reads the water temperature.

Figs. 4 through 6 show the pipeline during simula-

Figure 5: Heating state.

Figure 6: Cooling state.

tion when the knob is turned ON and OFF at random
times by the user. The default state is the cold state.
When the knob is turned to the OFF position, the
system moves into the heating state. When the knob
is turned again back to the OFF position, the system
moves into the cooling state and will stay there until
the water reaches the ambient temperature at which
time the system (through an internal state transition)
returns to the cold state. Temperature change is in-
dicated by the color of Water and Machine3, in addi-
tion to the reading on the Thermometer inside of Ma-
chine3. The material properties of Machinel! change
depending on the state of the knob. When turned
to the OFF position, Machine! is semi-transparent.
When turned on, it turns opaque. Inside Machine2,
the current state of the water is reflected by the level
of intensity of each Plant. The current state has an
increased intensity, resulting in a bright red sphere.

The dynamics of temperature is indicated at two

37

Heating

Figure 7: Outside the Heating phase.

Figure 8: Inside the Heating phase.

levels. At the highest level of the plant, we have a
three state FSM. Within each state, we have a differ-
ential equation. The equation is based on Newton’s
Law of Cooling and results in a first order exponen-
tial decay and rise that responds to the contro!l input
from the knob. The visual display of temperature
change confirms this underlying dynamics since the
user finds the temperature changing ever more slowly
when heating to 100°C or cooling back to the ambient
temperature. Fig. 7 displays a closeup of the heat-
ing phase from the outside, and Fig. 8 is a view from
inside the red sphere modeling the phase.

3 rube Methodology

The procedure for creating models is defined as fol-
lows:

1. The user begins with an object that is to be mod-
eled. This object can be primitive or complex—
such as a scene-with many sub-objects. In the
case of the teapot, we identify the teapot, water,
knob, heating element as well as other aspects
of the environment: room, walls, desk and floor.
Not all of these objects require embedded behav-

38

. Models are created.

ioral models; some objects are props or exist for
contextual reasons.

. The scene and object interactions are sketched

in a story board fashion, as if creating a movie
or animation. A scene is where all objects, in-
cluding those modeling others, are defined within
a VRML file. The rube model browser is made
available so that users can “fly though” an ob-
ject to view its models without necessarily clut-
tering the scene with all objects. However, hav-
ing sonie subset of the total set of models sur-
faced within a scene is also convenient for aes-
thetic reasons. The modeler may choose to build
several scenes with models surfaced, or choose
to view objects only through the model browser
that hides all models as fields of VRML object
nodes. In Fig. 1, the object Pipeline models the
heating and cooling of the water, which is inside
the teapot to the left of Pipeline. We could also
have chosen to place a GUI behavioral model
handle for the teapot inside the teapot itself or
within close proximity of the teapot.

. The shape and structure of all objects are mod-

eled in any modeling package that has an ex-
port facility to VRML. Most packages, such as
Kinetix 3DStudioMax and Autodesk AutoCAD
have this capability. Moreover, packages such as
CosmoWorlds and VRCreator can be used to di-
rectly create and debug VRML content. We used
CosmoWorlds for the walls, floor and Pipeline.
Other objects, such as the teapot, desk and chair
were imported from the web.

. VRML PROTO (i.e., prototype) nodes are cre-

ated for each object, model and components
thereof. This step allows one to create seman-
tic attachments so that we can define one ob-
ject to be a behavioral model of another (using
a behavior field) or to say that the water is con-
tained within the teapot. Without prototypes,
the VRML file structure lacks semantic relations
and one relies on simple grouping nodes, which
are not sufficient for clearly defining how objects
relate to one another. PROTOs are created for
all physical objects, whether or not the objects
are role-playing as a behavior model or as a be-
havior model component. This is discussed in
more depth in Sec. 4.

While multiple types of
models exist, we have focused on dynamic mod-
els of components, and the expression of these
components in 3D. Even textually-based mod-
els that must be visualized as mathematical ex-
pressions can be expressed using the VRML text

node. Models are objects in the scene that are
no different structurally from pieces of visible ob-
jects being modeled—they have shape and struc-
ture. The only difference is that when an ob-
ject is “modeling” another, one interprets the
object’s structure in a particular way, using a
dynamic model template for guidance.

. Several dynamic model templates exist. For
Newell’s Teapot (in Sec. 2), we used three: FBM,
FSM, and EQN. These acronyms are defined as
follows: FSM = Finite State Machine; FBM =
Functional Block Model; EQN = Equation Set.
Equations can be algebraic, ordinary differential,
or partial differential. The FBM serves to cap-
ture the control flow from the activity of the
knob to the temperature change of the water,
and on to the thermometer. The FSM inside
Machine2 of Pipeline models the water temper-
ature changes.

. The creative modeling act is to choose a dy-
namic model template for object behavior, and
then to pick objects that will convey the mean-
ing of the template within the scenario. This
part is a highly artistic enterprise since literally
any object can be used. It is not the policy of
rube to recommend or insist upon one metaphor.
In practice, different groups will evolve and cer-
tain metaphors may compete in a process akin
to natural selection. Our Pipeline could easily
have been more artistically modeled so that it
appeared more as a pipeline, and so the Plant
looked more like an industrial plant. We were
caught between trying to employ metaphor to
its fullest extent and wanting those familiar with
traditional 2D behavior models to follow the rube
methodology.

. There are three distinct types of roles played
by modelers in rube. At the lowest level,
there is the person creating the model templates
(FSM,FBM,EQN,PETRI-NET). Each dynamic
model template reflects an underlying system-
theoretic model [5]. At the mid-level, the per-
son uses an existing model template to create a
metaphor. An industrial plant is an example of
a manufacturing metaphor. At the highest level,
a person is given a set of metaphors and can
choose objects from the web to create a model.
These levels allow modelers to work at the lev-
els where they are comfortable. Reusability is
created since one focuses on the level of interest.

. The simulation proceeds by the modeler creat-
ing threads of control that pass events from one
VRML node to another. This can be done in one

of two ways: 1) using VRML Routes, or 2) us-
ing exposed fields that are accessed from other
nodes. Method 1 is familiar to VRML authors
and also has the advantage that routes that ex-
tend from one model component to an adjacent
component (i.e., from one state to another or
from one function to another) have a topolog-
ical counterpart to the way we visualize infor-
mation and control flow. The route defines the
topology and data flow semantics for the simula-
tion. Method 2 is similar to what we find in tra-
ditional object-oriented programming languages
where information from one object is made avail-
able to another through an assignment statement
that references outside objects and classes. Such
an assignment is termed “message passing.” In
method 1, a thread that begins at the root node
proceeds downward through each object that is
role-playing the behavior of another. The rout-
ing thread activates Script nodes that are em-
bedded in the structures that act as models or
model components for the behaviors. All objects
acting as behavioral model components are con-
nected to a VRML clock (i.e., TimeSensor) so
that multimodeling is made possible by allowing
model components to gain control of the simula-
tion and proceed in executing lower level model
semantics.

10. Pre- and Post-processing is performed on the
VRML file to check it for proper syntax and
to aid the modeler. Pre-processing tools in-
clude wrappers (that create a single VRML
file from several), decimators (that reduce the
polygon count in a VRML file), and VRML
parsers. The model browser mentioned earlier
is a post-production tool, allowing the user to
browse all physical objects to locate objects that
model them. In the near future, we will ex-
tend the parser used by the browser to help
semi-automate the building of script nodes. The
browser and underlying VRML parser is based
in Java (using JavaCUP) and therefore can be
activated through the web browser.

rube treats all models in the same way. For a
clarification of this remark, consider the traditional
use of the word “Modeling” as used in everyday
terms. A model is something that contains attributes
of a target object, which it is modeling. Whereas,
equation and 2D graph-based models could be viewed
as being fundamentally different from a commonsense
model, rube views them in exactly the same context:
everything is an object with physical extent and mod-
eling is a relation among objects. This unification is
theoretically pleasing since it unifies what it means

39

to “model” regardless of model type. We are able to
unify the commonsense view of modeling (i.e., scale
or clay models) with more abstract modeling tech-
niques used on the computer.

4 VRML IMPLEMENTATION OF THE
TEAPOT

Newell’s Teapot has the VRML scene graph struc-
ture as shown in Fig. 2, but there are also key proto-
type definitions used for objects and the models. The
structure of the PROTOs are as follows. First. we
have the PROTO for the dynamic model type FSM
(Finite State Machine):

EXTERNPROTO FSM [

eventIn SFFloat set_clock
field SFVec3f position
exposedField SFBool input
eventIn SFString set_state
field SFNode start_state
field MFNode sounds
field MFNode states
field MFNode transitions
field SFBool passive
field MFNode active

] "fsm.wrl#FSM"

The FSM is composed of states and transitions,
with each state having a sound. There is a
start_state and a position for placing the FSM
in the scene. set_clock is the clock input and al-
lows the FSM to take its input to drive the state
transition changes.

Each FSM may be modeled at one of two lev-
els: active and passive. The use of the 3 tanks
and 4 pipes is passive since there is no motion-only
a change in intensity of each tank when a state is en-
abled. An active mode implies the existence of two
extra nodes, a mover and a path, both of which de-
fine the geometry associated with an object moving
along a path. For example, if active has a field value
of [avatar24 spline3] then node avatar24 would
make a motion along a physical path defined by node
spline3 to denote a change in state.

EXTERNPROTO FSM_STATE [

eventIn SFFloat set_clock
exposedField SFBool enabled
field MFNode audio
exposedField MFNode geometry
field MFNode behavior

"fsm.wrl#FSM_STATE"

40

Each state and transition has a geometry model and
a behavior mode. The geometry model is that which
defines how the object is to be rendered. The be-
havior model defines how the state is to be executed.
behavior may terminate in a VRML Script node, but
may also be further defined by another 3D structure
to any abstraction level. Using geometry, we may
allow any 3D scene or object to reflect the notion of
state.

EXTERNPROTO FSM_TRANSITION [

eventIn SFFloat set_clock
exposedField SFBool enabled
eventOut SFString state_changed
field SFNode from

field SFNode to

field SFNode fsm

field SFNode object
exposedField MFNode geometry
field MFString behavior

] "fsm.wrl#FSM_TRANSITION"

The transition nodes are similar in that one may as-
sign both geometry and behavior to them. Each
transition has from and to states. The transition also
carries the behavior “logic” that determines whether
a state_change occurs.

The metaphor elements are mapped directly
to model templates, each of which is defined by a
PROTO node:

e Industrial Plant metaphor — Finite state ma-
chine — FSM PROTO

e Tank (in Plant) metaphor — State — FSM-
STATE PROTO

¢ Pipe (in Plant) metaphor — Transition — FSM-
TRANSITION PROTO

5 PROGRAMMING USING VRML

Object-Oriented Software engineering has long advo-
cated the use of modeling in defining the creation of
software. A recent example is the significant interest
in the Unified Modeling Language (UML) [12, 9]. The
embedded nature of software encourages the model-
ing approach since the design reflects the distributed
nature of the hardware components. Software engi-
neers evolve into system modelers. Using VRML, we
created a small operating system kernel that involves
metaphors for tasks (using avatars), routes through
the system (using colored paths) and resources (us-
ing office desks with attendants). The overall oper-
ating system is shown as an office building in Fig. 9

and inside the building there is a floor designated
as the kernel (Fig. 10). Tasks begin in a waiting

uf
LT
it

WA

Figure 10: Inside the O/S kernel.

area on the left side of Fig. 10 and proceed to the
CPU desk. Tasks continue to move toward the key
resources (DEVice, COMmunications, MEMory,I/O).
The paths to the resources are in orange and the re-
turn paths back to the holding area are blue. When
a resource is requested, this begins an audio track
specifying which resource is being used.

6 VRML ISSUES

We found VRML to be fairly robust for the task set
side within rube but there are a number of issues that
need to be resolved in the future. The most serious
issues, having an effect on rube, are delineated:

1. VRML needs a strong object-oriented (OO)
structure with classes, inheritance, object in-
stances and a capability for referring to a current
object with a this field. We found it difficult to
create a regional scoping of public variables, for
example, in allowing a component to gain access
to its parents fields. Instead, one has to expose
a field to every other node. One side-effect of a

41

o Is it “just” a wvisualization?

solid OO architecture would be that there would
be a distinct difference between defining a Node
and creating one. The existing DEF both defines
and creates.

. Exposed fields should operate exactly as if

one were to specify an eventIn, field and
eventOut. Several VRML texts suggest an
equivalence, but in practice they are quite differ-
ent. Currently, if one creates an exposedField,
then one cannot define an eventIn for set-
ting values in a script node using a function of
the eventIn name. There are many instances
where it would be useful to use both methods
of access to an exposedField: 1) directly with
node.set field, or 2) indirectly with a route
using set_field as an eventIn within a script
node. Routes are useful in surfacing connections
between one node and another, but prudent use
of exposedFields (if they were more completely
implemented) simplifies a spaghetti-like network
of routes.

. Both forward and backward references to nodes

should be possible. Currently, one cannot spec-
ify USE somenode unless it has already been de-
fined with DEF. This may require a multi-pass
option on parsing the VRML scene graph, which
would slow the parsing but give the VRML au-
thor the freedom to choose forward referencing
where they may wish to implement it.

. Scripting capabilities need to be expanded to

support native code, and need to be consistent
among browsers in supporting Java in the Script
node and full implementations of Javascript. In-
stead of being implementor options, they should
be required. Native code is essential if VRML
is to both compete with, expand upon and reuse
other 3D software.

. We found PROTO and EXTERNPROTO sup-

port to be variable among VRML software de-
velopers. Since these are among the most impor-
tant node types in VRML, their implementations
should be ubiquitous in all VRML modelers and
software support.

ART OF MODELING

Given the Newell Teapot scene, there are some key
issues which we should ask ourselves:

The work in
rube provides visualization, but models such as

Newell’s Teapot demonstrate active modeling en-
vironments whose existence serves an engineer-
ing purpose and not only a post-project visual-
ization purpose for outside visitors. This sort of

modeling environment is needed from the very’

start of a mission—as an integral piece of the
puzzle known as model design. There is little
question that this sort of production is useful for
teaching purposes, but we also view this as a
precursor to next generation software engineer-
ing. The power of VRML in this regard is that
it can be used to reinvent software engineering
through the surfacing of 3D models. It is one
thing to think of this as a wvisualization of an
Operating System kernel, but it is quite another
to call it the Operating System itself. We need
to bridge this gap if we are to progress beyond
textual, linear programming styles.

Is it economical? Is this a lot of work just to
create an FSM? All 3D objects are reused and
so can be easily grabbed from the web. The con-
cept of reuse is paramount to the rube approach
where the metaphor can be freely chosen and
implemented. Without the web, rube would not
be possible. 3D object placement can be just as
economical as 2D object placement, but object
repositories are required.

What is the advantage? 1f we consider psy-
chological factors, the 3D metaphor has signif-
icant advantages. First, 3D spatially-specific ar-
eas serve to improve our memory of the mod-
els (i.e., mnemonics). Second, graphical user in-
terfaces (GUIs) have shown that a human’s in-
teraction with the computer is dramatically im-
proved when the right metaphors are made avail-
able. rube provides the environment for building
metaphors. One should always be wary of mixed
metaphors. We leave the ultimate decision to the
user group as to which metaphors are effective.
A Darwinian-style of evolution will likely deter-
mine which metaphors are useful and which are
not. Aesthetics plays an important role here as
well. If a modeler uses aesthetically appealing
models and metaphors, the modeler will enjoy
the work. It is a misconception to imagine that
only the general populous will benefit from fully
interactive 3D models. The engineers and scien-
tist need this sort of immersion as well so that
they can understand better what they are doing,
and so that collaboration is made possible.

Is this art or science? The role of the Fine Arts
in science needs strengthening. With fully im-
mersive models, we find that we are in need

42

of workers with hybrid engineering/art back-
grounds. It is no longer sufficient to always
think “in the abstract” about modeling. Effec-
tive modeling requires meaningful human inter-
action with 3D objects. So far, the thin veneer of
a scale model has made its way into our engineer-
ing practices, but when the skin is peeled back,
we find highly abstract code and text. If the in-
ternals are to be made comprehensible (by any-
one, most importantly the engineer), they must
be surfaced into 3D using the powerful capabili-
ties of metaphors (7, 6]. This doesn’t mean that
we will not have a low level code-base. Two-
dimensional metaphors and code constructs can
be mixed within the 3D worlds, just as we find
them in our everyday environments with the em-
bedding of signs. At the University of Florida,
we have started a Digital Arts and Sciences Pro-
gram with the aim to produce engineers with a
more integrated background. This background
will help to produce new workers with creative
modeling backgrounds.

What role does aesthetics play in modeling? It is
sometimes difficult to differentiate models used
for the creation of pieces of art from those used
with scientific purposes in mind. Models used
for science are predicated on the notion that the
modeling relation is unambiguously specified and
made openly available to other scientists. Model-
ing communities generally form and evolve while
stressing their metaphors. In a very general
sense, natural languages have a similar evolu-
tion. The purpose of art, on the other hand, is to
permit some ambiguity with the hopes of causing
the viewer or listener to reflect upon the modeled
world. Some of the components in worlds such
as Fig. 1 could be considered non-essential mod-
eling elements that serve to confuse the scien-
tist. However, these elements may contribute to
a more pleasing immersive environment. Should
they be removed or should we add additional ele-
ments to please the eye of the beholder? In rube,
we have the freedom to go in both directions, and
it isn’t clear which inclusions or eliminations are
appropriate since it is entirely up to the modeler
or a larger modeling community. One can build
an entirely two dimensional world on a black-
board using box and text objects, although this
would not be in the spirit of creating immersive
worlds that allow perusal of objects and their
models.

It may be that a select number of modelers may
find the TeaWorld room exciting and pleasing,
and so is this pleasure counterproductive to the
scientist or should the scientist be concerned only

with the bare essentials necessary for unambigu-
ous representation and communication? Visual
models do not represent syntactic sugar (a term
common in the Computer Science community).
Instead, these models and their metaphors are
essential for human understanding and compre-
hension. If this comprehension is complemented
with a feeling of excitement about modeling, this
can only be for the better. Taken to the ex-
treme, a purely artistic piece may be one that is
so couched in metaphor that the roles played by
objects isn’t clear. We can, therefore, imagine
a kind of continuum from a completely unam-
biguous representation and one where the roles
are not published. Between these two extremes,
there is a lot of breathing space. Science can be
seen as a form of consensual art where everyone
tells each other what one object means. Agree-
ment ensues within a community and then there
is a mass convergence towards one metaphor in
favor of another.

8 SUMMARY

Effort to unify behavioral and software engineering
modeling methodologies are useful, but we should
also have a way to express models more creatively
and completely. Model communities will naturally
evolve around 2D and 3D metaphors yet to be de-
termined. rube has a strong tie to the World Wide
Web (WWW). The web has introduced a remarkable
transformation in every area of business, industry,
science and engineering. It offers a way of sharing
and presenting multimedia information to a world-
wide set of interactive participants. Therefore any
technology tied to the web’s development is likely to
change modeling and simulation. The tremendous in-
terest in Java for doing simulation has taken a firm
hold within the simulation field. Apart from being a
good programming language, its future is intrinsically
bound to the coding and interaction within a browser.
VRML, and its X3D successor, represent the future
of 3D immersive environments on the web. We feel
that by building a modeling environment in VRML
and by couching this environment within standard
VRML content, that we will create a Trojen Horse
for simulation modeling that allows modelers to cre-
ate, share and reuse VRML files.

Our modeling approach takes a substantial de-
parture from existing approaches in that the mod-
eling environment and the material object environ-
ment are merged seamlessly into a single environ-
ment. There isn’t a difference between a circle and
a house, or a sphere and a teapot. Furthermore, ob-

jects can take on any role, liberating the modeler to
choose whatever metaphor that can be agreed upon
by a certain community. There is no single syntax
or structure for modeling. Modeling is both an art
and a science: the realization that all objects can play
roles takes us back to childhood. We are building rube
in the hope that by making all objects virtual that-
we can return to free-form modeling of every kind.
Modeling in 3D can be cumbersome and can take con-
siderable patience due to the inherent user-interface
problems when working in 3D using a 2D screen in-
terface. A short term solution to this problem is to
develop a model package that is geared specifically to
using one or more metaphors, making the insertion
of, say, the petroleum refinery a drag and drop opera-
tion. Currently, a general purpose modeling package
must be used to carefully position all objects in their
respective locations. A longer term solution can be
found in the community of virtual interfaces. A good
immersive interface will make 3D object positioning
and connections a much easier task than it is today.

ACKNOWLEDGMENTS

We would like to thank the students on the rube
Project: Robert Cubert, Andrew Reddish, John Hop-
kins and Linda Dance. Also, we thank the following
agencies that have contributed towards our study of
modeling and simulation: (1) Jet Propulsion Lab-
oratory under contract 961427 An Assessment and
Design Recommendation for Object-Oriented Physi-
cal System Modeling at JPL (John Peterson, Stephen
Wall and Bill McLaughlin); (2) Rome Laboratory,
Griffiss Air Force Base under contract F30602-98-C-
0269 A Web-Based Model Repository for Reusing and
Sharing Physical Object Components (Al Sisti and
Steve Farr); and (3) Department of the Interior un-
der grant 14-45-0009-1544-154 Modeling Approaches
& Empirical Studies Supporting ATLSS for the Fu-
erglades (Don DeAngelis and Ronnie Best). We are
grateful for their continued financial support.

References

[1] Grady Booch. Object Oriented Design. Ben-
jamin Cummings, 1991.

[2] Rikk Carey and Gavin Bell. The Annotated
VRML 2.0 Reference Manual. Addison-Wesley,
1997.

[3] Robert M. Cubert and Paul A. Fishwick.
MOOSE: An Object-Oriented Multimodeling
and Simulation Application Framework. Sim-
ulation, 70(6):379-395, 1998.

43

(4] Paul A. Fishwick. Simpack: Getting Started
with Simulation Programming in C and C++. In
1992 Winter Simulation Conference, pages 154~
162, Arlington, VA, 1992.

[5

Paul A. Fishwick. Simulation Model Design and
Ezecution: Building Digital Worlds. Prentice
Hall, 1995.

[6] George Lakoff. Women, Fire and Dangerous
Things: what categories reveal about the mind.
University of Chicago Press, 1987.

t

George Lakoff and Mark Johnson. Metaphors
We Live By. University of Chicago Press, 1980.

8

Peter C. Marzio. Rube Goldberg, His Life and
Work. Harper and Row, New York, 1973.

(9] Pierre-Alain Muller. Instant UML. Wrox Press,
Ltd., Olton, Birmingham, England, 1997.

[10] Winfried Noth. Handbook of Semiotics. Indiana
University Press, 1990.

[11] James Rumbaugh, Michael Blaha, William Pre-
merlani, Eddy Frederick, and William Lorenson.
Object-Oriented Modeling and Design. Prentice
Hall, 1991.

(12] James Rumbaugh, Ivar Jacobson, and Grady
Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, Reading, MA,
1999.

AUTHOR BIOGRAPHY

PAUL FISHWICK is Professor of Computer and
Information Science and Engineering at the Univer-
sity of Florida. He received the PhD in Computer and
Information Science from the University of Pennsyl-
vania in 1986. His research interests are in computer
simulation, modeling, and animation, and he is a Fel-
low of the Society for Computer Simulation (SCS).
Dr. Fishwick will serve as General Chair for WSC00
in Orlando, Florida. He has authored one textbook,
co-edited three books and published over 100 techni-
cal papers.

44

A Hybrid Visual Environment for Models and Objects

Paul A. Fishwick

Department of Computer & Information Science & Engineering
University of Florida
Gainesville, Florida 32611, U.S.A.

July 13, 1999

ABSTRACT

Models and objects that are modeled are usually kept
in different places when we consider most modern
simulation software packages. Software that permits
the user to view 3D objects may also permit a view-
ing of the dynamic models for the objects, but these
views are usually separate. The object can be ro-
tated, translated and navigated while the model is
represented in a 2D fashion using text or 2D iconic
graphics. We present an approached based on the
Virtual Reality Modeling Language (VRML), where
the object and model reside in the same space. A
browsing capability is built to allow the user to search
for models "within” objects. Aside from the vi-
sual benefits derived from this integrated approach,
this methodology also suggests that models are re-
ally not very different from objects. Any object can
serve to model another object and when these objects
are made "web friendly,” it becomes feasible to use
VRML to create distributed models whose compo-
nents can reside anywhere over the web.

1 THE NATURE OF MODELING

One physical object captures some information about
another object. If we think about our plastic toys,
metal trains and even our sophisticated scale-based
engineering models, we see a common thread: to
build one object that says something about another—
usually larger and more expensive—object. Let’s call
these objects the source object and the target object.
Similar object definitions can be found in the litera-
ture of metaphors (Lakoff 1987) and semiotics {Noth
1990). The source object models the target, and so,
modeling represents a relation between objects. Of-
ten, the source object is termed the model of the tar-
get. We have been discussing scale models identified
by the source and target having roughly proportional
geometries. Scale-based models often suffer from the
problem where changing the scale of a thing affects

more than just the geometry. It also affects the fun-
damental laws applied at each scale. For example,
the hydrodynamics of the scaled ocean model may
be different than for the real ocean. Nevertheless, we
can attempt to adjust for the scaling problems and
proceed to understand the larger universe through a
smaller, more manipulable, version.

Later on in our education, we learned that mod-
eling has other many other forms. The mathematical
model represents variables and symbols that describe
or model an object. Learning may begin with alge-
braic equations such as d = at? + vot + dy where d,
v and a represent distance, velocity and acceleration,
and where dy and v represent initial conditions (i.e.,
at time zero) for starting distance and initial veloc-
ity. These models are shown to be more elegantly
derived from Newton’s laws, yielding ordinary differ-
ential equations of the form f = ma. How do these
mathematical, equational models relate to the ones
we first learned as children?

To answer this question, let’s first consider what
is being modeled. The equations capture attributes
of an object that is undergoing change in space (ie.,
distance), velocity and acceleration. However, none
of the geometrical proportions of the target are cap-
tured in the source since the structure of the equa-
tions is invariant to the physical changes in the tar-
get. A ball can change shape during impact with the
ground, but the equations do not change their shape.
If a ball represents the target, where is the source?
The source is the medium in which the equations are
presented. This may, at first, seem odd but it really
is no different than the toy train model versus the
actual train. The paper, phosphor or blackboard—
along with the medium for the drawing, excitation
or marking—has to exist if the equations are to ex-
ist. In a Platonic sense, we might like to think of
the equations as existing in a separate, virtual, non-
physical space. While one can argue their virtual
existence, this representation-less and non-physical
form is impractical. Without a physical represen-

45

tation, the equation cannot be communicated from
one human to another. The fundamental purpose of
representation and modeling is communication. Ver-
bal representations (differential air pressure) are as
physical as those involving printing or the exciting of

_a phosphor via an electron beam.

2 RUBE

Since 1989 at the University of Florida, we have
constructed a number of modeling and simulation
packages documented in (Fishwick 1992: Cubert
and Fishwick 1998) In late 1998, we started de-
signing Rube, named in dedication to Rube Gold-
berg (Marzio 1973), who produced many fanciful car-
toon machines, all of which can be considered mod-
els of behavior. The procedure for creating models
is defined as follows. Step I: The user begins with
an object that is to be modeled. For JPL, this can
be the Cassini spacecraft with all of its main sys-
tems: propulsion, guidance, science instrumentation,
power, and telecommunication. If the object is part
of a larger scenario, this scenario can be defined as the
top-most root object; Step 2: scene and interactions
are sketched in a story board fashion, as if creating a
movie or animation. A scene is where all objects, in-
cluding those modeling others, are defined within the
VRML file. VRML stands for Virtual Reality Mod-
eling Language (Carey and Bell 1997), which repre-
sents the standard 3D language for the web. The
Rube model browser is made available so that users
can “fly though” an object to view its models with-
out necessarily cluttering the scene with all objects.
However, having some subset of the total set of mod-
els surfaced within a scene is also convenient for aes-
thetic reasons. The modeler may choose to build sev-
eral scenes with models surfaced, or choose to view
objects only through the model browser that hides all
models as fields of VRML object nodes; Step 3: The
shape and structure of all Cassini components are
modeled in any modeling package that has an export
facility to VRML. Most packages, such as Kinetix
3DStudioMax and Autodesk AutoCAD have this ca-
pability. Moreover, packages such as CosmoWorlds
and VRCreator can be used to directly create and
debug VRML content; Step 4: VRML PROTO (..,
prototype) nodes are created for each object and
component. This step allows one to create seman-
tic attachments so that we can define one object to
be a behavioral model of another (using a behav-
ior field) or to say that the Titan probe is part of
the spacecraft (using a contains field), but a sibling
of the orbiter. Without prototypes, the VRML file
structure lacks semantic relations and one relies on

46

simple grouping nodes, which are not sufficient for
clearly defining how objects relate to one another;
Step 5 Models are created for Cassini. While mul-
tiple types of models exist, we have focused on dy-
namic models of components, and the expression of
these components in 3D. Even textually-based mod-
els that must be visualized as mathematical expres-
sions can be expressed using the VRML text node.
Models are objects in the scene that are no differ-
ent structurally from pieces of Cassini—they have
shape and structure. The only difference is that when
an object is “modeling” another, one interprets the
object’s structure in a particular way, using a dy-
namic model template for guidance; Step 6: Sev-
eral dynamic model templates exist. For Newell's
Teapot (in Sec. 3), we used three: FBM, FSM, EQN.
These acronyms are defined as follows: FSM = Fi-
nite State Machine; FBM = Functional Block Model;
EQN = Equation Set. Equations can be algebraic,
ordinary differential, or partial differential; Step 7:
The creative modeling act is to choose a dynamic
model template for some behavior for Cassini and
then to pick objects that will convey the meaning
of the template within the scenario. This part is a
highly artistic enterprise since literally any object can
be used. In VRML, one instantiates an object as a
model by defining it: DEF Parthenon-Complex FSM
{--.}. In other words, a collection of Parthenon-
type rooms are interconnected in such a way that each
Parthenon-Room maps to a state of the FSM. Portals
from one room to another become transitions, and
state-to-state transitions become avatar movements
navigating the complex; Step 8 There are three dis-
tinct types of roles played modelers in Rube. At the
lowest level, there is the person creating the model
templates (FSM,FBM,EQN,PETRI-NET). Each dy-
namic model template reflects an underlying system-
theoretic model (Fishwick 1995). At the mid-level,
the person uses an existing model template to create
a metaphor. A Parthenon-Complex as described be-
fore is an example of an architectural metaphor. At
the highest level, a person is given a set of metaphors
and can choose objects from the web to create a
model. These levels allow modelers to work at the
levels where they are comfortable. Reusability is cre-
ated since one focuses on the level of interest; Step
9. The simulation proceeds by the modeler creating
threads of control that pass events from one VRML
node to another. This can be done in one of two ways:
1) using VRML Routes, or 2) using exposed fields
that are accessed from other nodes. Method 1 is fa-
miliar to VRML authors and also has the advantage
that routes that extend from one model component
to an adjacent component (i.e., from one state to an-
other or from one function to another) have a topolog-

ical counterpart to the way we visualize information
and control flow. The route defines the topology and
data flow semantics for the simulation. Method 2 is
similar to what we find in traditional object-oriented
programming languages where information from one
object is made available to another through an assign-
ment statement that references outside objects and
classes. In method 1, a thread that begins at the root
node proceeds downward through each object that is
role-playing the behavior of another. The routing
thread activates Java or Javascript Script nodes that
are embedded in the structures that act as models or
model components for the behaviors; Step 10: Pre-
and Post-processing is performed on the VRML file
to check it for proper syntax and to aid the modeler.
Pre-processing tools include wrappers (that create a
single VRML file from several), decimators (that re-
duce the polygon count in a VRML file), and VRML
parsers. The model browser mentioned earlier is a
post-production tool, allowing the user to browse all
physical objects to locate objects that model them.
In the near future, we will extend the parser used
by the browser to help semi-automate the building of
script nodes.

Rube treats all models in the same way. For a
clarification of this remark, consider the traditional
use of the word “Modeling” as used in everyday
terms. A model is something that contains attributes
of a target object, which it is modeling. Whereas,
equation and 2D graph-based models could be viewed
as being fundamentally different from a commonsense
model, Rube views them in exactly the same context:
everything is an object with physical extent and mod-
eling is a relation among objects. This unification is
theoretically pleasing since it unifies what it means
to “model” regardless of model type.

3 NEWELL’S TEAPOT

In the early days of computer graphics (c. 1974-75),
Martin Newell rendered a unique set of Bézier surface
spline patches for an ordinary teapot, which currently
resides in the Computer Museum in Boston. The
teapot was modeled by Jim Blinn and then rendered
by Martin Newell and Ed Catmull at the University
of Utah in 1974. While at this late date, the teapot
may seem quaint, it has been used over the years as
an icon of sorts, and more importantly as a bench-
mark for all variety of new techniques in rendering
and modeling in computer graphics. The Teapot was
recently an official emblem of the 25th anniversary
of the ACM Special Interest Interest Group on Com-
puter Graphics (SIGGRAPH).

One of our goals for Rube was to recognize that
the Teapot could be used to generate another poten-
tial benchmark—one that captured the entire teapot,
its contents and its models. The default teapot has no
behavior and has no contents; it is an elegant piece of
geometry but it requires more if we are to construct
a fully digital teapot that captures a more complete
set of knowledge. In its current state, the teapot is
analogous to a building fagade on a Hollywood film
studio backlot; it has the shape but the whole entity
is missing. In VRML, using the methodology previ-
ously defined, we built TeaWorld in Fig. 1. We have
added extra props so that the teapot can be visual-
ized, along with its behavioral model, in a reasonable
contextual setting. The world is rendered in Fig. 1
using a web browser. World is the top-most root of
the scene graph. It contains a Clock, Boiling_System,
and other objects such as the desk, chairs, floor and
walls. The key fields in Fig. 2 are VRML nodes of the
relevant field so that the contains field is refers to mul-
tiple nodes for its value. This is accomplished using
the VRML MFNode type. The hierarchical VRML
scene graph for Fig. 1 is illustrated in Fig. 2. The

World
e
' i
v v v v v
Clock Agoiling_System Furniture Floor Walls
A\
contains -——————
A\ 4 > v v
Pipeline Knob Water Thermometer
functions ™. lbe ibe Ibe
L v v
M!cﬁne? yachmez_ Machine3
ibe
PR A
Plant
> -

4y T ,v v
Tank1 Tank3 Pipet * fipea

A\ ! Y Y
Tank2 -'- - - - » Pipe2 4 Pipe4

‘e
* ibe! ibef

Figure 2: VRML Scene Graph for the Teapot and its
models.

scene contains walls, a desk, chair and a floor for
context. On the desk to the left is the teapot which
is filled with water. The knob controlling whether
the teapot heating element (not modeled) is on or

47

Figure 1: Office scene with Newell Teapot, dynamic model and props.

off is located in front of the teapot. To the right of
the teapot, there is a pipeline with three machines,
each of which appears in Fig. 1 as a semi-transparent
cube. Each of these machines reflects the functional
behavior of its encapsulating object: Machinel for
Knob, Machine2 for Water and Machined for Ther-
mometer. The Thermometer is a digital one that is
positioned in Machine3, and is initialized to an arbi-
trary ambient temperature of 0° C. Inside Machine?,
we find a more detailed description of the behavior
of the water as it changes its temperature as a re-
sult of the knob turning. The plant inside Machine2
consists of Tankl!, Tank2, Tank3, and four pipes that
move information from one tank to the next. Inside
of each tank, we find a blackboard on which is drawn
a differential equation that defines the change in wa-
ter temperature for that particular state. The fol-
lowing modeling relationships are used: Pipeline is a
Functional Block Model (FBM), with three functions
(i.e., machines); Machine is a function (i.e., semi-
transparent cube) within an FBM; Plant is a Finite
State Machine (FSM) inside of Machine 2; Tank is a
state within a FSM, and represented by a red sphere;
Pipe is a transition within a FSM, and represented by
a green pipe with a conical point denoting direction
of control flow; and Board is a differential equation,
represented as white text. The following metaphors
are defined in this example. The three cubes repre-
sent a sequence of machines that create a pipeline.
One could have easily chosen a factory floor sequence
of numerically controlled machines from the web and
then used this in TeaWorld to capture the informa-

tion flow. Inside the second machine, we find a plant,
not unlike a petroleum plant with tanks and pipes.

The Pipeline and its components represent phys-
ical objects that can be acquired from the web.
For our example, we show simple objects but they
have been given meaningful real-world application-
oriented names to enforce the view that one ob-
Ject models another and that we can use the web
for searching and using objects for radically differ-
ent purposes than their proposed original function.
The overriding concern with this exercise is to per-
mit the modeler the freedom to choose any object
to model any behavior. The challenge is to choose a
set of objects that provide metaphors that are mean-
ingful to the modeler. In many cases, it is essen-
tial that more than one individual understand the
metaphorical mappings and so consensus must be
reached during the process. Such consensus occurs
routinely in science and in modeling when new mod-
eling paradigms evolve. The purpose of Rube is not to
dictate one model type over another, but to allow the
modelers freedom in creating their own model types.
In this sense, Rube can be considered a meta-level
modeling methodology.

The simulation of the VRML scene shown in
Fig. 2 proceeds using the dashed line thread that be-
gins with the Clock. The clock has an internal time
sensor that controls the VRML time. The thread cor-
responds closely with the routing structure built for
this model. It starts at Clock and proceeds downward
through all behavioral models. Within each behav-

48

ioral model, routes exist to match the topology of
the model. Therefore, Machinel sends information
to Machine2, which accesses a lower level of abstrac-
tion and sends its output to Machine3, completing
the semantics for the FBM. The FSM level contains
routes from each state to its outgoing transitions.

Fig. 3 shows a closeup view of the pipeline, that
represents the dynamics of the water, beginning with
the effect of the turning of the knob and ending with
the thermometer that reads the water temperature.

Figs. 4,5 and 6 show the pipeline during simu-

tleatme

Figure 3: Pipeline closeup.

Figure 4: Cold state.

Figure 5: Heating state.

lation when the knob is turned on and off at ran-
dom times by the user. The default state is the cold
state. When the knob is turned to the on position,
the system moves into the heating state. When the
knob is turned again back to an off position, the
system moves into the cooling state and will stay
there until the water reaches ambient room temper-

49

Figure 7: Outside the Heating phase.

ature at which time the system (through an internal
state transition) returns to the cold state. Temper-
ature change is indicated by the color of Water and
Machine3, in addition to the reading on the Ther-
mometer inside of Machine3. The material prop-
erties of Machinel change depending on the state
of the knob. When turned off, Machinel is semi-
transparent. When turned on, it turns opaque. Inside
Machine2, the current state of the water is reflected
by the level of intensity of each Plant. The current
state has an increased intensity, resulting in a bright
red sphere.

The dynamics of temperature is indicated at two
levels. At the highest level of the plant, we have a
three state FSM. Within each state, we have a differ-
ential equation. The equation is based on Newton’s
Law of Cooling and results in a first order exponen-
tial decay and rise that responds to the control input
from the knob. The visual display of temperature
change confirms this underlying dynamics since the
user finds the temperature changing ever more slowly
when heating to 100°C or cooling back to the ambient
temperature. Fig. 7 displays a closeup of the heat-
ing phase from the outside, and Fig. 8 is a view from
inside the red sphere modeling the phase.

Given the Newell Teapot scene, there are some
key issues which we should ask ourselves: Is it a vi-
sualization? The work in Rube provides visualiza-

Figure 8: Inside the Heating phase.

tion, but models such as Cassini and Newell's Teapot
demonstrate active modeling environments whose ex-
istence serves an engineering purpose and not only
a post-project visualization purpose for outside vis-
itors. This sort of modeling environment is needed
from the very start of a mission—as an integral piece
of the puzzle known as model design; Is it economi-
cal? Is this a lot of work just to create an FSM? Why
go through the bother of creating the Parthenon, the
complex and the avatar? All of these items are reused
and so can be easily grabbed from the web. The
concept of reuse is paramount to the Rube approach
where the metaphor can be freely chosen and imple-
mented. Without the web, Rube would not. be possi-
ble. 3D object placement can be just as economical
as 2D object placement, but object repositories are
required not only for Cassini and Titan, but also for
objects that serve to model the dynamic attributes
of other objects (i.e., the Parthenon). Another eco-
nomical aspect centers on the issue of computational
speed for these models. Would creating a simula-
tion in a more typical computer language would be
more efficient? The structure of objects and their
models within a VRML scene can be translated or
compiled into native machine code as easily as source
code; the 3D model structure becomes the “source
code;” What is the advantage? If we consider psy-
chological factors, the 3D metaphor has significant
advantages. First, 3D spatially-specific areas serve
to improve our memory of the models (i.e., mnemon-
ics). Second, graphical user interfaces (GUIs) have
shown that a human’s interaction with the computer
is dramatically improved when the right metaphors
are made available. Rube provides the environment
for building metaphors. One should always be wary
of mixed metaphors. We leave the ultimate decision
to the user group as to which metaphors are effec-
tive. A Darwinian-style of evolution will likely de-
termine which metaphors are useful and which are
not. Aesthetics plays an important role here as well.
If a modeler uses aesthetically appealing models and

metaphors, the modeler will enjoy the work. It is a
misconception to imagine that only the general pop-
ulous will benefit from fully interactive 3D models.
The engineers and scientist need this sort of immer-
sion as well so that they can understand better what
they are doing, and so that collaboration is made
possible: Is this art or science? The role of the Fine
Arts in science needs strengthening. With fully im-
mersive models, we find that we are in need of work-
ers with hybrid engineering/art backgrounds. It is
no longer sufficient to always think “in the abstract”
about modeling. Effective modeling requires mean-
ingful human interaction with 3D objects. So far,
the thin veneer of a scale model has made its way
into our engineering practices, but when the skin
is peeled back, we find highly abstract codes and
text. If the internals are to be made comprehensi-
ble (by anyone, most importantly the engineer), they
must be surfaced into 3D using the powerful capabil-
ities of metaphors (Lakoff and Johnson 1980; Lakoff
1987). This doesn't mean that we will not have a
low level code-base. Two-dimensional metaphors and
code constructs can be mixed within the 3D worlds,
just as we find them in our everyday environments
with the embedding of signs. At the University of
Florida, we have started a Digital Arts and Sciences
Program with the aim to produce engineers with a
more integrated background. This background will
help in the production of new workers with creative
modeling backgrounds.

4 ART OF MODELING

It is sometimes difficult to differentiate models used
for the creation of pieces of art from those used with
scientific purposes in mind. Models used for science
are predicated on the notion that the modeling re-
lation is unambiguously specified and made openly
available to other scientists. Modeling communi-
ties generally form and evolve while stressing their
metaphors. In a very general sense, natural languages
have a similar evolution. The purpose of art, on
the other hand. is to permit some ambiguity with
the hopes of causing the viewer or listener to reflect
upon the modeled world. Some of the components
in worlds such as Fig. 1 could be considered non-
essential modeling elements that serve to confuse the
scientist. However, these elements may contribute to
a more pleasing immersive environment. Should they
be removed or should we add additional elements to
please the eye of the beholder? In Rube, we have the
freedom to go in both directions, and it isn’t clear
which inclusions or eliminations are appropriate since
it is entirely up to the modeler or a larger modeling

50

community. One can build an entirely two dimen-
sional world on a blackboard using box and text ob-
jects, although this would not be in the spirit of cre-

ating immersive worlds that allow perusal of objects

and their models.

It may be that a select number of modelers may
find the TeaWorld rocm exciting and pleasing, and so
is this pleasure counterproductive to the scientist or
should the scientist be concerned only with the bare
essentials necessary for unambiguous representation
and communication? Visual models do not repre-
sent syntactic sugar (a term common in the Com-
puter Science community). Instead, these models
and their metaphors are essential for human under-
standing and comprehension. If this comprehension
is complemented with a feeling of excitement about
modeling, this can only be for the better. Taken to
the extreme, a purely artistic piece may be one that
is so couched in metaphor that the roles played by
objects isn’t clear. We can, therefore, imagine a kind
of continuum from a completely unambiguous repre-
sentation and one where the roles are not published.
Between these two extremes, there is a lot of breath-
ing space. Science can be seen as a form of consen-
sual art where everyone tells each other what one
object means. Agreement ensues within a commu-
nity and then there is a mass convergence towards
one metaphor in favor of another.

We are not proposing a modification to the
VRML standard although we have found that poor
authoring support currently exists in VRML editors
for PROTO node creation and editing. We are sug-
gesting a different and more more general mindset
for VMRIL—that it be used not only for representing
the shape of objects, but all modeling information
about objects. VRML should be about the complete
digital object representation and not only the repre-
sentation of geometry with low-level script behaviors
to support animation. Fortunately, VRML contains
an adequate number of features that makes this new
mindset possible even though it may not be practiced
on a wide scale. While a VRML file serves as the dig-
ital object, a model compiler is also required for the
proper interpretation of VRML objects as models.

5 SUMMARY

There is no unified modeling methodology, nor should
there be one. Instead, modelers should be free to
use and construct their own worlds that have spe-
cial meaning to an individual or group. With Rube,
we hope to foster that creativity without limiting a
user to one or more specific metaphors. Rube has a

strong tie to the World Wide Web (WWW). The web
has introduced a remarkable transformation in every
area of business, industry, science and engineering.
It offers a way of sharing and presenting multimedia
information to a world-wide set of interactive partic-
ipants. Therefore any technology tied to the web’s
development is likely to change modeling and sim-
ulation. The tremendous interest in Java for doing
simulation has taken a firm hold within the simula-
tion field. Apart from being a good programming
language, its future is intrinsically bound to the cod-
ing and interaction within a browser. VRML, and its
X3D successor, represent the future of 3D immersive
environments on the web. We feel that by building a
modeling environment in VRML and by couching this
environment within standard VRML content, that
we will create a “trojan horse” for simulation mod-
eling that allows modelers to create, share and reuse
VRML files. '

Our modeling approach takes a substantial de-
parture from existing approaches in that the mod-
eling environment and the object environment are
merged seamlessly into a single environment. There
isn’t a difference between a circle and a house, or a
sphere and a teapot. Furthermore, objects can take
on any role, liberating the modeler to choose what-
ever metaphor that can be agreed upon by a certain
community. There is no single syntax or structure
for modeling. Modeling is both an art and a science;
the realization that all objects can play roles takes
us back to childhood. We are building Rube in the
hope that by making all objects virtual that we can
return to {ree-form modeling of every kind. Modeling
in 3D can be cumbersome and can take considerable
patience due to the inherent user-interface problems
when working in 3D using a 2D screen interface. A
short term solution to this problem is to develop a
model package that is geared specifically to using one
or more metaphors, making the insertion of, say, the
Parthenon complex rooms a drag and drop operation.
Currently, a general purpose modeling package must
be used carefully position all objects in their respec-
tive locations. A longer term solution can be found
in the community of virtual interfaces. A good im-
mersive interface will make 3D object positioning and
connections a much easier task than it is today.

We will continue our research by adding to Rube
and extending it to be robust. In particular, we
plan on looking more closely into the problem of tak-
ing legacy code and making it available within the
VRML model. This is probably best accomplished
through TCP/IP and a network approach where the
Java/Javascript communicates to the legacy code as
a separate entity. We plan on extending the VRML

51

parser, currently used to create the model browser,
so that it can parse a 3D scene and generate the
Java required for the VRML file to execute its simula-

tion. Presently, the user must create all Script nodes.

The model browser will be extended to permit vari-
ous modes of locating models within objects. A “fly
through” mode will take a VRML file. with all object
and model prototypes, and place the models physi-
cally inside each object that it references. This new
generated VRML file is then browsed in the usual
fashion. Multiple scenes can be automatically gener-
ated.

ACKNOWLEDGMENTS

I would like to thank the students on the Rube
Project: Robert Cubert, Andrew Reddish, and John
Hopkins. I would like to thank the following agencies
that have contributed towards our study of model-
ing and simulation: (1) Jet Propulsion Laboratory
under contract 961427 An Assessment and Design
Recommendation for Object-Oriented Physical Sys-
tem Modeling at JPL (John Peterson, Stephen Wall
and Bill McLaughlin}; (2) Rome Laboratory, Griffiss
Air Force Base under contract F30602-98-C-0269 A
Web-Based Model Repository for Reusing and Shar-
ing Physical Object Components (Al Sisti and Steve
Farr); and (3) Department of the Interior under grant
14-45-0009-1544-154 Modeling Approaches & Empir-
ical Studies Supporting ATLSS for the Everglades
(Don DeAngelis and Ronnie Best). We are grateful
for their continued financial support.

REFERENCES

Carey, R., and G. Bell. 1997. The Annotated VRML
2.0 Reference Manual. Addison-Wesley.

Cubert, R. M., and P. A. Fishwick. 1998. MOOSE:
An Object-Oriented Multimodeling and Simu-
lation Application FrameworkSimulation 70(6),
379-395.

Fishwick, P. A. 1992. Simpack: Getting Started with
Simulation Programming in C and C++4. In 1992
Winter Simulation Conference, Arlington, VA,
154-162.

Fishwick, P. A. 1995. Simulation Model Design and
Ezecution: Building Digital Worlds. Prentice
Hall.

Lakoff, G. 1987. Women, Fire and Dangerous Things:
what categories reveal about the mind. University
of Chicago Press.

Lakoff, G., and M. Johnson. 1980. Metaphors We
Live By. University of Chicago Press.

Marzio. P. C. 1973. Rube Goldberg, His Life and
Work. New York: Harper and Row.

Noth, W. 1990. Handbook of Semiotics. Indiana Uni-
versity Press.

AUTHOR BIOGRAPHY

PAUL FISHWICK is Professor of Computer and
Information Science and Engineering at the Univer-
sity of Florida. He received the PhD in Computer and
Information Science from the University of Pennsyl-
vania in 1986. His research interests are in computer
simulation, modeling, and animation, and he is a Fel-
low of the Society for Computer Simulation (SCS).
Dr. Fishwick will serve as General Chair for WSC00
in Orlando, Florida. He has authored one textbook,
co-edited three books and published over 100 techni-
cal papers.

52

On the Use of 3D Metaphor in Programming
John F. Hopkins?, Paul A. Fishwick®
Dept. of Computer Information Science and Engineering, Univ. of Florida, Gainesville, FL 32611

ABSTRACT

The use of metaphor in programming can be a powerful aid to the programmer, inasmuch as it provides concrete properties to
abstract ideas. In tum, these concrete properties can aid recognition of, and reasoning about, programming problems.
Another potential benefit of the use of metaphor in programming is the improvement of mental retention of facts and
solutions to programming problems. Traditionally, programs have been produced in a textual medium. However, a textual
medium may be inferior to a three-dimensional medium in the development and use of metaphor, as the concrete properties
that metaphors provide are real-world phenomena, which are naturally three-dimensional. An example of the use of three-
dimensional metaphors in programming was created. This consisted of a mock operating system task scheduler, along with
some associated hardware devices, developed in a2 VRML environment using VRML PROTO nodes. These nodes were
designed as objects based on real-world metaphors. The issues, problems, and novelties involved in programming in this
manner were explored.

Keywords: Metaphor, 3D, Three-Dimensional, Programming Method, VRML, Rube
1. INTRODUCTION

The act of programming began as a mathematical activity, extending from machine code to assembly language, and then onto
languages with humanly readable text with natural language variable and function names. In 40 years, programming has
evolved from its abstract roots and yet text is still the primary medium in which programs are created, often with shorthand
notations for program components. For economic reasons, there has always been a strong tendency toward abstraction in
Computer Science and this is evident in the nature of modemn programming languages. For example, the process of iteration
is accomplished in a way that has not changed much in all these years. The same can be said for most other programming
constructs, even though we have come far with new design paradigms such as component, agent, and object-based software
architectures.

We present a method of programming that is significantly different than many others, although some of our techniques are
shared by many modeling paradigms (e.g., agent-based, swarm-based, biologically-based, and object-oriented) and several
burgeoning areas such as Software and Information Visualization, Programming by Example, and Visual Programming.
These efforts, while diverse, all have one thing in common: they suggest new programming techniques that are based on the
real world. We have built upon this general idea to create a paradigm called “Rube” (for Rube Goldberg), in which real-
world objects are an integral part of the language.

Our programs are multimodels, where a “multimodel” is defined as a hierarchically connected set of behavioral models,
each of a specific type. The basic types are numerous and include finite state machine (FSM), functional block model
(FBM), Petri net (PNET), and queuing net (QNET). These base behavioral model types and their components are mapped to
an arbitrary domain using metaphor. The choices of domain and metaphor are artistic choices that are left to the programmer.

We use the Virtual Reality Modeling Language (VRML) as our language for encoding these models and bringing them to
life.

In the current research, we demonstrate and examine the interplay between the multimodeling and metaphor aspects of the
Rubs paradigm ‘through the synthesis of an example program. First, we conduct a short survey of related research and
compare it to the current research. Next, we create a hypothetical operating system task scheduler using the Rube
multimodeling and metaphor methodology. Lastly, we discuss the issues, advantages, and disadvantages of the approach.

* e-mail: jhopkins@cise.ufl.edu
b ¢-mail: fishwick@cise.ufl.edu

In Enabling Technology for Simulation Science IV, Alex F. Sisti, Editor, 53
Proceedings of SPIE Vol. 4026 (2000) ® 0277-786X/00/$15.00

2. BACKGROUND AND RELATED RESEARCH

In order to provide a context for the current research, we provide some background. This background includes the
consideration of object-oriented design philosophy, Software and Information Visualization, and work done with three-
dimensional authoring tools. We conduct a brief survey of other three-dimensional programming research, including CUBE
and Programming by Example/Demonstration. Then, we compare and contrast the aforementioned research with the current
research. We find that the current research shares many similarities with related research, yet is significantly different in
several ways.

2.1. Object Oriented Thinking and Design

In part, the object-oriented approach to software design and construction is concerned with modeling. Specifically, it
suggests that before any textual code is written, a model of the software’s functionality should be created which will guide
and inform the rest of the process in a “top-down™ fashion — from abstract/general to concrete/specific. In this effort,
modularization is a primary design criterion. In a broad sense, and as suggested by the term “object-oriented,” these modules
may be viewed as individual objects, each with their own functions, interfaces, attributes, and allowable operations. These
objects confer many benefits on the programmer, as they facilitate the easy management of what otherwise might be
significant complexity, simplify the debugging process, and create the potential for code re-use, to name a few.?

It is not difficult to see the parallels between object-oriented design and the world in which we live every day, both in an
abstract and a physical sense. In fact, a common way used by computer science instructors to teach novices to understand the
object-oriented approach is to draw parallels between it and the real world. For example, when we are patrons of restaurants,
we deal with the waitstaff, and not directly with the kitchen. In an object-oriented world, the waiter or waitress is an object,
we are objects, and the kitchen is an object. The waitstaff serve as our interfaces to the kitchen, since they possess that
privilege and we do not. We would violate the modularity enforced by the commonly termed “client-server” relationship if
we attempted to deal directly with the kitchen as patrons.

This suggests a form of design and programming in three dimensions, where these parallels can be surfaced visually
during the design and programming process. At the moment, programmers typically may use pencil and paper to make
sketches of program modules and the relationships between them, use visual programming tools, visualize these modules
mentally, or do none of the above. Some may proceed directly to text coding. However, a characteristic of all the methods
mentioned above is that they are implemented in two dimensions (or less). If we suppose that we as humans are physical
creatures that live in a three-dimensional world, it may follow that a better approach to design and programming lies in the
utilization of a three-dimensional design and programming environment. Such an environment would allow for the
incorporation of geometry and behavioral dynamics into object-oriented design.

Although object-oriented design has no specific relationship with the use of three-dimensional metaphors in programming,
a frequent occurrence during the design process is that one or more abstract types or functions are created. [f we must
attempt to visualize an abstract function such as a sorter, we may arbitrarily decide to visualize it as a green pyramid.
However, if it is possible to visualize the sorter as an animated person sorting boxes, what we have done is created a
metaphor for the sorter. We have made an analogy between the abstract sorter, and a concrete, real-world object such as the
person. If the sorter is visualized as a person in this fashion, there is no need to memorize the previous mapping of the green
pyramid to the sorter. The visualization of the person and the metaphor introduced now provides this mapping implicitly. In
effect, the visualization provides a semantic clue as to the object’s function. This sort of use of metaphor, then, may find
great utility during the design and debugging process.

2.2. Software and Information Visualization

Software Visualization is primarily concerned with using computer graphics and animation to illustrate programs, processes,
and algorithms. Software Visualization systems are sometimes used as teaching aids and also during program development
as a way to help programmers understand their code.' Information Visualization is primarily concemned with visualizing data
as an aid in interpreting and understanding the information.? In general, the focus of Software and Information Visualization
is on visualizing programs or data after they have been created using traditional means.

Several problems worthy of study have been encountered during visualization research. These include problems of
abstraction of operations, data, and semantics, levels of detail, scaling, and user navigation." > Additionally, visualization

4

I

may occur in two dimensions, three dimensions, or a combination of these. Obviously, there are myriad ways to visualize
programs and data, and perhaps the challenge of visualization research is to find the most usable and efficient ways of
accomplishing this task.

The difficulties encountered in visualization research are also frequently encountered in other fields and disciplines. Any
two or three-dimensional programming method or environment must tackle many of the same issues encountered in
visualization research. This suggests that visualization is a sub-problem of any such development system, either implicitly or
explicitly.

2.3. Work in VRML and Other Three-Dimensional Authoring Tools

Many three-dimensional geometry-authoring tools have been developed, such as CosmoWorlds and 3DSMax. These tools
are appropriate for creating three-dimensional environments and objects, and also for modeling relatively simple behaviors of
these environments and objects. Occasionally, environments and objects created in this fashion are endowed with the ability
to interact with the user. Artists are one community that make frequent use of these tools in their work, as it provides them a
relatively cheap, reusable, flexible, and unique medium. Geometry, sound, light, color, movement, and interaction can be
combined into a whole using these tools.

VRML, or Virtual Reality Modeling Language, is a popular three-dimensional language that is based on the concept of a
tree hierarchy of nodes. Some reasons for its popularity include the fact that it is non-proprietary, portable, and many
browsers for it are freely available. Another reason is the proliferation and accessibility of the Internet. An approximation of
“generic” and “object-oriented” programming can be achieved through the use of a type of VRML node called PROTO (short
for “prototype”) and the use of a type of structure called ROUTE that can be conceptualized as a “pipe” that connects
structures to events. Code for behaviors of objects can be written in JavaScript or some likeness of it. These attributes,
among others, make it attractive for an early attempt at development of a three-dimensional programming environment.
However, the use of VRML is not without problems and difficulties, especially concerning the implementation of data
structures and complex behaviors that are typical of modem programs.

2.4. Three-Dimensional Programming

A primary goal of three-dimensional programming is to enable the user to program using executable graphics. A brief review
of two approaches to this problem is given below.

2.4.1. CUBE

Marc Najork’s CUBE is an example of a three-dimensional visual programming language that has a three-dimensional
syntax. In this language, programs consist of an arrangement of three-dimensional shapes instead of a linear stream of text.
CUBE supports recursion, function mapping, type checking, and user-defined types. One aim of the language is that of
supporting virtual-reality based editing of programs for the user.’

The CUBE language is divided into two fragments. The first fragment consists of predicate definitions and logic
formulas, and the second fragment consists of type definitions and type expressions. Three-dimensional cubes represent
terms and atomic formulas in the logic fragment. Pipes connect the arguments of predicate applications (i.e., atomic
formulas), forming a data flow diagram. The third dimension is used to group various two-dimensional diagrams together.
Sets of base types and primitive predicate definitions are provided initially. The prototype implementation of CUBE
functions by translating visual programs into a text format, and then operates on the text format.”

CUBE does not make extensive use of visual metaphor. However, it does make use of the data fiow metaphor on a high
level and as a guiding paradigm for the representation of the language.” As described above, this metaphor also happens to
extend into the three-dimensional realm. From this, it can be seen that the use of metaphor need not be limited to its typical,
everyday senses, but also can be used as a guiding framework for a form of representation.

2.4.2. Programming by Example/Demonstration

Programming by Example and Programming by Demonstration (PBE/PBD) are synonymous terms for a type of
programming characterized by the following phases: 1) the user performs a series of steps on some example of a problem,

55

2) the computer records the steps, and 3) the computer applies these steps on some new, similar example. The programs
generated in the recording step may not be applied exactly as they were recorded, but may adapt according to the differences
in future examples.* This sometimes requires such programs to be able to generalize the steps to new instances, and to
perform inference in varying degrees, from no inference to a great deal of inference.®

One focus of PBE is that of catering to the novice or non-programmer. For a novice programmer, there is usually a
significant difference between the computer’s representation of a problem and his or her own. As programmers become more
experienced, they become more conditioned to think of a given problem in the context of the computer’s representation, since
the problem must ultimately be expressed in this fashion and there has been no efficient way to communicate the
programmer’s representation to the computer. PBE would bridge this gap by “bringing the computer closer to the
programmer” rather than vice-versa.’

PBE attempts to lower the barriers between novice users and computer programming by eliminating, as much as possible,
the idiosynchrocies of traditional programming language syntax. It attempts to provide visual, interactive, intuitive, and
functional interfaces for program construction, and performs inference (to varying degrees) to reduce the amount of inference
that must be performed by the programmer.® A recent trend in the PBE community has been to extend into the three-
dimensional programming language arena.” ™ This extension is natural since we are conditioned to think of the world around
us in three dimensions, and so this is one way to bring the computer closer to the programmer. Attempts may be made, so far
as possible, to keep programs and constructs in concrete domain terms rather than abstract computer terms.* In short, a goal
is to let an end-user program without realizing that he or she is programming.

Ken Kahn’s Toon Talk is a PBD system designed for children in which “the programmer is a character in an animated
virtual world in which programming abstractions are replaced by their tangible analogs.” Data structures are given three-
dimensional geometry, such as a box with holes, into which different objects may be placed. Birds and nests perform “send”
and “receive” operations. Robots are guarded clauses that are trained to perform actions when they receive boxes. The
programmer may generalize robots by using a vacuum cleaner to remove details from the robots’ guard clauses.’ It can be
seen here that Toon Talk makes use of visual metaphor.

2.5. Comparison of the Current Research with Related Research

The current research, with its focus on extending programs and their components to resemble real-world objects (in an
abstract, non-visual sense), has many parallels with object-oriented design approaches to programming. Since these parallels
are somewhat obvious, they will not be elucidated here. However, the current research also seeks to give these objects three-
dimensional representations that convey meaning through visual metaphor. In this way it is unlike, and could be considered
an extension of object-oriented design.

Software and Information Visualization research and the current research share several problems in common. These
include abstraction vs. concretion, levels of detail, navigation, and many others. Without doubt, solutions to these problems
that have arisen and will arise during the course of either line of research should easily translate into the other line. However,
in the previous description of Software and Information Visualization research it was stated that a general focus of that
research is on visualizing programs and etc. after they have been created using traditional means. Therefore, this research
tends not to focus on the immediate aspects of program development, such as the potential for creating a three-dimensional
programming interface for users. Furthermore, metaphor is not commonly considered during such research. In these ways,
the current research is unlike, and could again be considered an extension of Software and Information Visualization.

Work irf three-dimensional authoring tools and the current research are alike inasmuch as objects are identified by their
geometry and have specific physical and behavioral attributes. The current research was carried out in part within a three-
dimensional authoring tool (CosmoWorlds) and in large part within a three-dimensional language (VRML). However, the
current research is distinguished from typical three-dimensional authoring since most of the work was done in a text editor
(for VRML coding), and a great deal of scripting was performed to make the behaviors of the objects in the world complex,
dynamic, and interactive. The heavy use of PROTO nodes and ROUTEs in the current research also distinguish it from
straightforward VRML environments.

The current research is most like CUBE and PBE, but is significantly unlike these in several respects. We did not use a
three-dimensional editor significantly during the programming effort. The “dragging and dropping” performed was on three-
dimensional objects that had only geometric representation. Unlike CUBE, there was no formal metaphor that informed a

56

three-dimensional syntax, nor was a set of three-dimensional representations of primitive data types and operations available
for use. Also unlike CUBE, type checking was performed by exclusively by the programmer, and the text program was
translated to the visual program. The use of metaphor and geometric shape in the current research was more free form than
that of CUBE. The current research is unlike PBE inasmuch as the computer did not record the programmer’s steps or
perform any generalization or inference. Also unlike PBE, the current research is not immediately concerned with novice
programmers, and there was no attempt to shield the programmer from the complexities of the implementation, although an
ultimate goal of continued research would be to simplify the programming task for the programmer. And again, the use of
metaphor in the current research was unrestricted and user-defined, unlike that of PBE.

3. EXAMPLE

In this section, we demonstrate the practical application of the current research through the presentation of an example
program. The program represents a hypothetical operating system task scheduler that is synthesized utilizing metaphors and
three-dimensional visualization. Several issues that arise during the programming effort are discussed. Based on this
example it is found that, though not without difficulty, this approach to programming is viable and worthy of further research.

3.1. A First Attempt: A Hypothetical Operating System Task Scheduler/Queuing System

Since we are making the claim that three-dimensional metaphor can be used as a high-level design aid, we set out to choose
for our example a complex program that should be familiar to our audience. Programs meeting these criteria should best
demonstrate the utility of three-dimensional metaphor as a design aid. Though there are many choices that meet the familiar
and complex criteria, we focus here on the operating system (OS) as a generic type.

In our example, we envision a MINIX-like OS, which can be characterized by hierarchical, vertical layers (top to bottom):
1) user processes (e.g., word processor), 2) server processes (e.g., file system), 3) /O tasks (e.g., disk), and 4) process
management (e.g., scheduling and communication). In the example, we focus on the process management portion of the OS,
and specifically upon a hypothetical task scheduler in that layer. In an abstract sense, the task scheduler may be viewed as a
complex queuing system, or QNET.

3.2. Metaphor Approach and Mappings

The sort of vertically layered structure of the OS described above lends itself naturally to an architectural metaphor, where
the OS itself may be visualized as a building, as pictured in Fig. 1. The layers of the OS then correspond to the different
floors of the building. This is the metaphor we choose. Besides floors, a couple of things that can typically be found inside
buildings are people and furniture.

Ixecute)
Pahs O OM

MY wegin 1P
DEV waistu DOWN

COM weivht U2
COM acizht IXNVN
MEM wenht 1P
AM we i DOWN
10 wivl VP

O weipht BOWK

Figure 1. The architectural metaphor applied to the operating system.

57

Keeping these things in mind, we now proceed to model the operations of the layers of the OS. The primary interactions
between the layers of our hypothetical OS occur through message passing. Although we do not immediately focus on a
choice of metaphor for these interactions since the actual implementation of message passing may be somewhat complex, we
choose a prospective metaphor and set it aside temporarily in order to concentrate on the construction of a single layer. The
metaphor we choose for message passing is that of a person transporting a briefcase that contains the message from one place
to another.

First, we decide to model the task scheduler portion of the process management layer. Our example task scheduler is a
non-preemptive, dynamic priority scheduling system that contains tasks, four priority queues, and the following five types of
physical devices with their associated queues: 1) CPU, 2) DEV (i.e., device), 3) COM (i.e, communication), 4) MEM (i.e.,
memory load/store), and 5) /O (e.g., disk read/write). Expanding our previous metaphors, we map a task to a person and a
device to a “service facility” which is a person behind a desk. The priority and device queues map directly to physical space
as waiting lines. Persons can travel over paths between the devices and queues. Taking stock of our progression so far,
overall we have at least a minimal Wway to represent the significant portions of our hypothetical task scheduler.

33. Implementation

We are now concerned with the details of implementing the above task scheduler along with its metaphors in a three-
dimensional environment. In the context of VRML, we create PROTOs for each of the items in our task scheduler that will
be used again and again. A VRML convention for naming PROTO:s is to fully capitalize the PROTO name, e.g. MYPROTO.
We create the following PROTOs: 1) PERSON, 2) CPUFACILITY, 3) FACILITY, 4) QUEUEMANAGER, and 5) PATH.
PERSON is described below. The CPU has special management functions, so it is given its own PROTO. All devices

movement of persons throughout the world.

Each of the PROTOs mentioned has a physical geometry node included inside that will give it an identifiable and
appropriate physical presence in the three-dimensional environment. Some of these physical geometry nodes are modeled in
a three-dimensional authoring tool prior to their inclusion in the PROTOs. For example, instances of PERSON look like a
stylized version of an actual person, the geometry of which is modeled in CosmoWorlds. These appearances are according to
the metaphors we are using.

Some items of note within the PROTOs are the attributes they include in their declarations. For example, PERSON has
the fields: 1) task type (one of CPU, DEV, COM, MEM, or I/O), 2) cpu run time left (only relevant if this is a CPU task), and
3) task priority (from | through 4). The implication here is that each instance of PERSON in our task scheduler carries
around its own state information, which can be accessed and modified by other components of the scheduler. Other instances
of PROTOs have similar ways of utilizing attributes.

After the objects of the task scheduler have been physically arranged in the environment, we have a static representation
of the example task scheduler. The next Job is to make the task scheduler function dynamically and in an animated fashion.
This is accomplished in VRML through the occurrence and utilization of events. Events are generated and sent through
ROUTE: to their destinations. The actual implementation involves directing an eventOut field of a VRML object to the left
half of a ROUTE, and then directing the right half of the ROUTE to an eventln field of another object. For example:
ROUTE ObjectNamel.eventOutFieldnamel TO ObjectName?2 eventInFieldnamel

Note that PATH is a metaphor in the following respect: it has a parallel function as that of a ROUTE. PATH physically
transports “movers” through the world in a like manner as ROUTE transports events through the world. See Fig. 2. PATHs
are given physical geometry that can be turned on or off by the user.

Two more PROTOs are created to aid the implementation: 1) MFACTORY and 2) RANDOMIZER. There are other
PROTO:s that aid the implementation that are not mentioned here, but of these, MFACTORY and RANDOMIZER are the
most important. MFACTORY generates people (tasks) dynamically, and RANDOMIZER randomly sets the fields of the
persons to specific task types and assigns them a cpu run time if necessary. These two PROTOs have little to do with our
initial metaphors. As such, it is not necessary for them to have a physical presence in the world and therefore they have no
geomewry associated with them. If desired, geometry could be added to them later.

S8

ROUTE
Nodel.eventOut — > Node2.Eventin
Mover Factory, PATH _ > Service Facility,
Oueue. etc. etc.

Figure 2. The path metaphor as applied to a generic ROUTE.

In the final product, proceeding in a top-down fashion, we first encounter the shell of the building of the OS as pictured in
Fig. 1. Taking off the shell, we see a series of floors stacked one on the other as shown in Fig. 3. On one of these floors we
see the task scheduler operating as shown in Fig. 3 and Fig. 4. Inside the task scheduler, we see persons moving through
queues and along paths toward service facilities, where they spend some random amount of time receiving service as pictured
in Fig. 5. Service itself has no animation (yet) but is associated with a unique type of sound that continues as long as that
type of service is being provided. When their service at some facility is complete, persons leave the service facilities, enter a
“void” area, and have their attributes reset to start the process again. This “recycling” of persons avoids destroying and
regenerating them in order to continue the simulation. Lastly, a heads-up-display (HUD) is provided, which allows the user
to turn the geometric representations of the paths on and off and alter the random probabilities of task type assignment, all
while the simulation is operating.

Figure 3. The floors of the OS building with the task scheduler shown on the top floor.

A prospective addition to the above-described world is being implemented at time of writing. This addition involves
placing an FSM inside each person that reflects the associated task’s current state: 1) In Transit, 2) Waiting, and 3) Running.
These states roughly correspond to the familiar “waiting/running/ready” FSM for processes in an OS task scheduler. The
user is able to zoom in on any particular person, and see through the person’s transparent skin into the person’s chest, where
the FSM is shown progressing through its various states, as pictured in Fig. 6. This demonstrates the both the multimodeling
and metaphor aspects of Rube. 59

Figure 4. Top view of the task scheduler. The CPU facility is shown at top center, with its priority queues just below and to the left of it.
DEV, COM, MEM, and 1/O service facilities are on shown on the right, top to bottom respectively, with queues to the left of each.

Figure 6. A task’s internal FSM with the In Transit, Waiting, and Running states. The task shown is being serviced at the CPU.
60

The actual implementation of the above described three-dimensional world/program is located at the following URL at
time of writing: http://www.cise.ufl.edw/~fishwick/rube/worlds/os.htm}

A more detailed account of the implementation and operation of the world can be found at the given URL, also. A VRML
browser such as CosmoPlayer 2.1.1 or Blaxxun Contact 4.2 is required to view the world itself. The FSM addition described
above is already implemented for Blaxxun Contact 4.2, but has minor bugs in CosmoPlayer 2.1.1, and so will not be released
until such bugs are fixed.

3.4. Issues
3.4.1. Modeling, Metaphor, and the “Real World”

The choice of the architectural metaphor for the OS may guide the rest of the design process, but it is not the only possible
metaphor that can be chosen. This choice is left to the programmer. Neither is it necessary that the architectural metaphor
exclusively dominate the rest of the design process. There is great freedom in subsequently choosing peer or sub-metaphors
that may or may not have some relation to the architectural metaphor. These choices may lead to a “multi-metaphor”
construction. The importance of this concept is that one need not necessarily come up with an over-arching metaphor that
can include every possible circumstance that will need to be modeled in advance. Note here that we do not return to the
person and briefcase message passing metaphor, although we must do so eventually. The point is that we do not need to
expand on it immediately.

Note that we attempt to physically surface as many relevant attributes of the metaphor and object we are modeling as
possible. This is key to the use of three-dimensional metaphor. If it cannot be seen visually, the utility of the metaphor may
be greatly reduced.

Not every object or process that can be modeled is easily translated to three-dimensional metaphor, and it may often not
be desirable to do so. Also, it is probable that many modeling or programming tasks have no metaphor that is a “perfect fit.”
We do not claim that all things should be translated to metaphor. The reason for this is especially evident when the
programmer must deal with the “nuts and bolts” of the detailed implementation of a given program. No metaphor is
appropriate or metaphor is simply unnecessary when these situations are encountered. This barrier will remain until such
time as programmers no longer need to deal with the details of traditional programming. Rather, we claim that the use of
three-dimensional metaphor can be of great aid and may simplify the programming task in some instances. However, a
programmer must first keep his or her mind open to the possibility.

3.4.2. Implementation and Technical Issues

First and foremost, VRML is not an object-oriented language. In fact, VRML seems to have no identifiable paradigm, if
even one is possible. This makes it difficult to achieve object-oriented design goals with VRML. PROTOs, ROUTEs, and
scripts alone are not enough to satisfy these goals, because there are few restrictions on their structure and function.

The standards for VRML are widely and differently interpreted, resulting in different and sometimes unpredictable
- behavior between browsers. This is especially evident for event ordering and handling. Overall, it becomes extremely
difficult to produce consistent behavior between browsers, and programmers of VRML may find themselves inconvenienced
by the necessity of adapting their code depending on the type of browser being used.

There is no good three-dimensional editing tool that allows one to “program” VRML using three-dimensional graphics.
Ideally, we would like to be able to write a PROTO, place it in a “toolbox,” and then later gain drag-and-drop access to that
PROTO through a three-dimensional editing tool. Then we would like to connect ROUTEs like “pipes” to and from our
different objects and PROTOs in the three-dimensional editor. There is no such editor — it remains to be developed.

Lastly, VRML is a translated language. As complexity of a given world increases, there can be a noticeable drain on

computer resources, even with very fast PCs. Also, there are no good debugging tools for VRML, as browser error messages
can be cryptic. This has the effect of lengthening the design-debug cycle.

61

ACKNOWLEDGMENTS

We would like to thank the following funding sources that have contributed towards our study of modeling and simulation:
(1) Jet Propulsion Laboratory under contract 961427 An Assessment and Design Recommendation for Object-Oriented
Physical Modeling at JPL (John Peterson and Bill McLaughlin); (2) Rome Laboratory, Griffiss Air Force Base under
contract F30602-98-C-0269 A Web-Based Model Repository for Reusing and Sharing Physical Object Components (Al Sisti
and Steve Farr); and (3) Department of the Interior under grant 14-45-0009-1544-154 Modeling Approaches & Empirical
Studies Supporting ATLSS for the Everglades (Don DeAngelis and Ronnie Best). We are grateful for their continued
financial support.

b

Sl ey

REFERENCES

Graphics, Visualization & Usability Center at Georgia Tech, “Software Visualization,”
http://www.cc.gatech.edu/gvu/softviz/

Graphics, Visualization & Usability Center at Georgia Tech, “Information Visualization,”
http://www.cc.gatech.edw/gvu/softviz/infoviz/infoviz.html

K. Kahn, “Generalizing by Removing Detail,” in Communications of the ACM 43(3), pp. 104-106, March 2000.

H. Lieberman, “Programming by Example,” in Communications of the ACM 43(3), pp. 73-74, March 2000.

B. Meyer, Object-Oriented Software Construction Second Edition, Prentice Hall PTR, Upper Saddle River, N. I, 1997.
B. A. Myers, R. McDaniel, and D. Wolber, “Intelligence in Demonstrational Interfaces,” in Communications of the ACM
43(3), pp. 82-89, March 2000.

M. Najork, Programming in Three Dimensions. Ph D thesis, University of Illinois at Urbana-Champaign, Urbana, L. L.,
61801, 1994.

A. Repenning and C. Perrone, “Programming by Analogous Examples,” in Communications of the ACM 43(3),

pp- 90-97, March 2000.

D. C. Smith, A. Cypher, and L. Tesler, “Novice Programming Comes of Age,” in Communications of the ACM 43(3),
pp- 75-81, March 2000.

. R. St. Amant, H. Lieberman, R. Potter, and L. Zettlemoyer, “Visual Generalization in Programming by Example,”

in Communications of the ACM 43(3), pp. 107-114, March 2000.

62

3.4.3. Aesthetic Issues

The current research brings out the issue of aesthetics in programming in a novel way. At the moment, programmers may
discuss the aesthetics of programs that exist as text code. These discussions may include the subjects of code commenting,
brace indexing, overall design efficiency, and etc. Sometimes, aesthetics may not be considered at all. With the introduction
of three-dimensional metaphor, aesthetics play a larger role; and the potential develops for programs to evolve into a type of
visual art. '

In the present example, some effort is made to have the program interact with and entertain the user. This is done with
view changes, animation, and sound. It should be noted that the programmers are not artists, but rather use some creativity
that might not otherwise have been called for. For programmers that would rather not consider this issue, it may be ignored,
or it may prove to be a hindrance to using the method altogether. Others may view it as an opportunity to explore and
pioneer a new art form.

3.4.4. Psychological Issues

The utilization of three-dimensional metaphor necessitates that the programmer thinks in an object-oriented fashion. When
the program and its operation will ultimately be represented in three dimensions with concrete and familiar objects, the
programmer has little choice but to consider this during the programming process. Still, the programmer must make a mental
effort to keep this in mind, and there is some extra work involved in invoking three-dimensional metaphors. Additionally, a
programmer must now be concemned with problems associated with visualization. Finally, since we are extending the
concept of object-oriented design, a very slight paradigm shift is involved.

With the freedom to choose any type of metaphor, including a combination of metaphors to represent a program, we also
introduce the possibility that there can be “too much freedom.” In other words, great freedom could result in poor structure,
or vacillation over what is “the best metaphor.” A programmer must be disciplined enough to adhere to good design
principles and be creative at the same time.

Two prime concerns for programmers are the desire to do interesting things and the desire to do them efficiently and/or
expeditiously. While the present example may be interesting, the efficiency and expeditiousness of it for designing and
implementing an actual, practical operating system task scheduler is beyond discussion. This is because the design task,
minus the three-dimensional metaphors (that of designing an OS and its task scheduler), had already been largely completed
prior to the beginning of the project by virtue of the fact that we had chosen MINIX as a rough model. The design and
generation of a novel program would better demonstrate the utility of three-dimensional metaphor in the design task. As far
as implementation is concemed, the visualization itself would make the scheduler far too slow to perform the scheduling task
efficiently. Eventually, the visualization would probably be stripped away to boost efficiency (if the visualization is not an
integral part of the program), perhaps only to resurface again during debugging efforts.

Ultimately, the utility of three-dimensional metaphor will need to be judged from the results of empirical research. Such
research might concern itself with both tangible and psychological factors. These may include such things as gains or losses
in efficiency and correctness compared with traditional methods, length of design and debug cycles, programmer memory
retention of program structures and design after varying periods of time, and ease and enjoyability of use.

4. CONCLUSIONS

Through the creation of an example operating system task scheduler program using VRML, we have explored the utility and
viability of the multimodeling and metaphor aspects of the Rube paradigm. This approach involved modeling components of
the task scheduler as a QNET, and in the near future will incorporate FSMs inside the tasks. Further, appropriate metaphors
and their mappings to real-world objects were used to aid in the design and visualization of the system. The issues,
advantages, and disadvantages of the approach were discussed. It was found that the method was both useful and viable for
the example program and that the general method was worthy of further research and extension.

The overall goal of the research was to take some of the first steps toward an approximation of a three-dimensional, visual
programming language. The value of such a language, in part, is that it could simplify the programmer’s task in many ways.
This is because the programming would take place in a visual environment that is more like the real world in which we live
than the traditional text medium. Only time and further research will determine how this goal can be achieved.

63

A Three-Dimensional Synthetic Human Agent
Metaphor for Modeling and Simulation’

John F. Hopkins and Paul A. Fishwick. Senior Member, IEEE

Abstract—The use of metaphor can be a potential aid to the
novice modeler in several ways. Metaphor can imbue abstract
ideas with concrete properties, thereby making the abstract
ideas more accessible. The analogies suggested by metaphor
might also aid reasoning about modeling and implementation
problems. Another potential benefit of metaphor in modeling
is the improvement of mental retention of model architecture
and functionality. Traditionally, models and programs have
been produced in a two-dimensional or textual medium.
However, these media may be inferior to a three-dimensional
medium in the development and use of metaphor, as the
concrete properties that metaphors often provide are real-
world phenomena, which are naturally three-dimensional. We
developed an example of the use of metaphors in modeling and
three-dimensional simulation. The example consists of a
simplified operating system task scheduler, along with
associated hardware devices, developed in a VRML
environment using VRML PROTO nodes. These nodes are
designed as modular objects based on real-world metaphors.
We were able to construct a set of metaphors and prototypes
that may, if extended, ease the modeling and design of agent-
oriented systems for novices. A proposed extension of one
metaphor presented in the research is the synthetic human
agent.

Index Terms—Metaphor, Visual Programming, 3D,
Programming, VRML, rube ™

. INTRODUCTION

HE act of programming began as a mathematical

activity, extending from machine code to assembly
language, and then onto languages with humanly readable
text with natural language variable and function names. In
40 ycars, programming has cvolved from its abstract roots
and yet text is still the primary medium in which programs
are created, often with shorthand notations for program
components. For economic reasons, there has always been
a strong tendency toward abstraction in computer science
and this is evident in the naturc of modern programming
languages. For example, the process of iteration (i.e.,
looping) is accomplished in a way that has not changed
much in all these years. The same can be said for most
other programming constructs, even though we have come

John F. Hopkins and Paul A. Fishwick are with the
Department of Computer Science and Enginecring,
University of Florida, Gainesville, FL 32611

" This paper is based on work reported in [18].

64

far with new design paradigms such as component, agent,
and object-based software architectures.

We present a method of modeling and programming that
is significantly different than many others, although some
of our techniques are shared by many modeling paradigms
{e.g.. agent-based [20]. swarm-based [4], and object-
oriented [29]) and several burgeoning arcas such as
Software and Information Visualization (sce [39] and [5]).
Programming by Example (see [22], [25]. [34], [37]. and
[38]). and Visual Programming (scc [1], [9]. [23]. [24]. and
[31]). These efforts, while diverse. all have one thing in
common - they suggest new modeling and programming
techniques that are based on the real world. We have built
upon this general idea to create a paradigm called rube™
(after Rube Goldberg), in which real-world objects arc
integral parts of the language. The rube™ paradigm
centers naturally within the domain of modeling for
novices, and may progress eventually (as with the casc of
the desktop metaphor) to assist experts.

Our programs are multimodels (scc [11], [12], [14], and
[16]y where a multimodel is defined as a hicrarchically
connected set of behavioral models., cach of a specific type.
The basic types arc numcrous and include finite state
machine (FSM), functional block model (FBM), Petri net
(PNET). and qucuing net (QNET) (sce [12]). These base
behavioral model types and their components are mapped to
an arbitrary domain using metaphor. The choices of
domain and metaphor arc artistic choices that are left to the
programmer. We use the Virtual Reality Modeling
Language (VRML) as our language for encoding these
models and bringing them to life.

In the current research, we demonstrate and examine the
interplay between the multimodeling and metaphor aspects
of the ruhe™ paradigm through the synthesis of an example
simulation. In Section Il. we conduct a short survey of
related research and contrast it with the current rescarch.
We create a greatly simg)liﬁcd operating system task
scheduler using the riehe™ multimodeling and mctaphor
methodology in Scction 1. In Secctions Il and IV, we
discuss the issucs. advantages, disadvantages, and
extensions of the approach.

1. BACKGROUND AND RELATED RESEARCH

Background includes the consideration of the use of
metaphor in software development (Part A), and the
possible specific applications of the synthetic human agent
metaphor to Software Agent systems (Part B). We also
consider object-oriented design philosophy (Part C),
Software and Information Visualization (Part D), Visual
Programming (Part E), and work done with three-
dimensional (3D) authoring tools (Part F). Next, we briefly
sample some other 3D programming research (Part G).
Then we compare and contrast the aforementioned research
with the current research (Part H). Finally, we compare the
current research with some of our own previous research in
Object-Oriented Physical Multimodeling (OOPM) (Part I).

A. The Use of Metaphor in Software Development

Before we begin a discussion of the use of metaphor in
software development, let us first give a formal definition
of the word metaphor. According to Merriam-Webster s
Collegiate Dictionary (10" ed., 1998) a metaphor is “a
figure of speech in which a word or phrase literally
denoting one kind of object or idea is used in place of
another to suggest a likeness or analogy between them.”
This definition is admittedly shallow, but the operative
phrases are “object oridea . . . in place of another to suggest
[an] . . . analogy between them.” In sum, the key to the
power of metaphor is the suggestion of analogies between
ideas and objects.

From the above, it may be intuitively concluded that
metaphors help people communicate their ideas to others,
view ideas from different perspectives, and organize
knowledge. In the field of computer science, users are
concerned with organizing information and communicating
instructions to computers through various interfaces. The
commonly termed desktop metaphor is one ubiquitous
example of the use of metaphor in operating system (OS)
interface design.

The usefulness of metaphor in programming (visual or
otherwise) is a contentious issue in a wide variety of
research literature [2]. Part of the problem is that the
simple definition of metaphor given above belies the
complexity of the volumes of active multi-disciplinary
research that is devoted to it [41]. Since there are several
perspectives on the nature and operation of metaphor, the
quantification of the effects of metaphor becomes a non-
trivial task. To further complicate matters, there are several
different ways to define wusefulness. Productivity is only
one of many possible measures of usefulness.

Even though we may not be able to come to a consensus
on the nature and operation of metaphor, research
concerning the use of metaphor in programming continues.
Some research suggests that intuitive, optimistic
expectations of the effectiveness of metaphor in

65

programming are not well supported by empirical studies
[2]. The benefits of using metaphors seem marginal at
times, and positive effects may be attributable to other
factors, such as direct manipulation of icons or the effects
of using diagrams [2]. However, the use of metaphor in
diagrams has been shown to provide some mnemonic
assistance, which appears to be greatest when the user of
the diagram constructs her own metaphor [2].

. Since the “metaphor usefulness issue™ is complex and
beyond the scope of the paper, we might instead pursue the
question: “Can we show that the use of metaphor doesn t
hurt?” It has been claimed that some commonly used
metaphors in computer science do not fit well, and so these
metaphors cause people to draw incorrect analogies [32].
Some evidence also suggests that the use of concrete
representations can limit the formation of abstractions in
learning programming [9]. However, we suggest that if
metaphors are thoughtfully crafted to fit well, and we do
not cling too tightly or overly long to them, these dangers
can be avoided.

Despite the unclear conclusions described above,
metaphors are commonly used by experienced computer
scientists to express otherwise complex concepts to those
whom have little or no background knowledge to draw
upon. And, being a part of everyday speech patterns,
metaphors have also worked their way into communications
amongst computer scientists (expert or not). For example,
we flush buffers to empty them of their contents, and
computers can have viruses. We use these metaphors
because they seem to fit well, and they provide us with
some economy and power of representation. Research
concerning the use of metaphor in the communication
patterns of software developers that must work in groups
and with end-users seems to be scarce. Considering the
central role that communication plays in facilitating
teamwork, this seems to be an unfortunate omission.

B. Application of the Synthetic Human Agent Metaphor
to Software Agent Systems

During the Dagstuhl Workshop [15], we explored a
number of issues regarding the relationships between agents
and M&S (modeling and simulation). This simple use of
metaphor comes to the rescue in demonstrating a
connection: Let the agents be human in appearance and in
action, and then have the agents operate within a micro-
world common to agents, such as a business workplace.

Let us examine more closely some intuitive reasons for
creating a metaphor that suggests an analogy between
humans and agents. First, we must define what a software
agent is. Since we know of no agreed-upon, formal
definition for this term, we provide a functional definition
by reviewing the various characteristics and abilities that
have been used to describe software agents in research
literature. Some of these characteristics and abilities

include 1) the autonomous representation of another entity,
2) the ability to communicate, interact, and collaborate with
other entities, 3) the ability to perceive, move through, react
to, and alter a complex, dynamic environment, 4) the ability
to reason, learn, and adapt, and 5) the ability to take
initiative in pursuing goals [17], [20]. The foregoing list is
neither definitive nor exhaustive. However, a cursory
comparison of these characteristics with some of the
defining functional characteristics of a typical human being
will reveal that the list could have been entitled “Some
defining functional characteristics of a typical human
being,” and readers should not have noticed the difference.
Furthermore, a brief survey of agent literature reveals that
the functions of agents are commonly analogous to the
functions of human beings in the real world. Therefore, it
is not a great stretch of the imagination to metaphorically
equate agents with human beings. Thus, the synthetic
human agent is born.

By placing synthetic human agents in the business
workspace environment previously mentioned, we create a
business workflow metaphor. This metaphor can be
mapped to any model, process, or procedure whose
elements involve queued entities, resources, and pathways.
Additionally, this approach creates a direct relationship
between M&S and agents — namely, agents are thought of
and represented as synthetic humans.

In this research, we create synthetic human agents to act
as representatives of operating system (OS) tasks inside a
simplified task scheduler. However, we stress that these
agents are not perceptive, intelligent, or autonomous.
Rather, they may be considered to be agents inasmuch as
they serve as representatives of another entity (i.e., they are
subtasks of a higher-level task), and they maintain their
own internal state information. At this point, some readers
may reasonably reject the notion that these aspects of our
synthetic human agents are sufficient to qualify them as
agents. However, we hope that these readers will bear with
us a while longer while we expand the concept and, so
doing, show that our synthetic humans have the potential to
lay a stronger claim to the title of agent.

For example, consider a software agent OS in which
several synthetic human agents may be used to represent
the same task within disparate portions of the OS (e.g., file
system manager), and within a computer s hardware (e.g.,
memory). In this environment, a single task may possess
several agents throughout the system. The agents common
owner — the task itself — would link these. This use of a
synthetic human as an agent of a higher-level task could
potentially involve a shift away from the idea that tasks are
simply manipulated by an OS. Rather, tasks and their
agents within the system could play a more active role as
seekers of services. Traditionally, tasks have no perception
of the OS, but rather the OS perceives and manages tasks.
For the tasks and their agents to become more active in
these respects, a possible course of action is to endow them
with perceptive abilities and varying degrees of autonomy.
Without doubt, this can be considered as a radical departure

66

from traditional views of monolithic OS functionality (i.c.,
the OS is a resource manager and user interface). Less
controversial is the notion that software agents may inhabit
a physically distributed system (OS or other), in which they
autonomously travel about between different hosts in their
quest to perform tasks (i.e. mobile agents, [20]). To reduce
the contrast between these ideas, we might assert that there
is little difference between the distributed system and the
monolithic system from an abstract point of view — after all,
they both contain tasks and physically distributed hardware
devices. To raise the contrast, we might consider pragmatic
issues such as network delays, bandwidth, and sccurity. We
suggest that the out-of-hand dismissal of unusual abstract
thinking incited by the use of metaphor may rob us of
potentially useful and interesting insights like those above.
The inspirational metaphor in this case is the synthetic
human agent.

How might synthetic human agents help novices
understand difficult modeling scenarios? In short, the
agent-human metaphor provides novices with a ready-made
storehouse of conceptual analogies and mappings that exist
between agents and humans. These analogies can be used
to simplify thinking about problems in modeling, design,
and sometimes implementation of solutions. For example,
assume that we are assigned the task of designing a
distributed system that is implemented over a wide area
network. Also assume that the system contains mobile
agents. Time-tested processes employed to simplify
thinking about such a potentially complex system are
abstraction, modeling, and visualization. The nodes of the
network could be modeled and visualized as a web of
spheres interconnected by pathways. Synthetic human
agents could be used to represent the mobile agents
described above. These synthetic human agents could
physically move over the paths between the spheres in an
effort to extract services from the nodes, while the
visualization of this process reflects the position of each
agent in the network with respect to the nodes and
pathways. Additionally, a great deal of information can be
gleaned from this sort of visualization. For example, users
may be able to literally see “broken” links between nodes,
find “misplaced” agents, and derive an intuitive knowledge
of system load and activity. Admittedly, the types of
knowledge listed do not require the use of the synthetic
human agent metaphor. However, the metaphor can give
users the visual cue necessary to differentiate agents from
other objects in the world, which is an important aspect of
determining the functions of agents, objects, and the
relationships between them.

Let us give another example that shows a more direct use
of the synthetic human agent metaphor. A common
problem area in agent research is that of security, especially
in the context of mobile agents [19], [35]. How might the
synthetic human agent metaphor help novices think about
this problem? They could draw an analogy between the
nodes of the network and buildings in the real world.
Mobile agents travel amongst the nodes of the network just
as humans travel amongst buildings. How do humans gain

access to buildings? They pass through the doors, and if the
building is secure, the doors are locked. However, if a
human has a key to the door s lock, then he or she can get
into the building. This suggests that locks should be placed
on the nodes of the network at their communication access
points (software or hardware), and specific agents should be
granted access to these nodes with keys. This might be
enough to satisfy a novice modeler, but admittedly it is not
nearly enough to satisfy a more advanced modeler or
provide an adequate architecture for airtight security. Still,
the analogies can be expanded, and a better solution might
be developed by incorporating public key techniques — yet
another construct that is best explained to novices through
the use of metaphor and visualization. Solving the problem
of security in a network that contains mobile agents is not
our focus. Rather, our focus is on suggesting a mode of
thinking about modeling and design problems that is
inspired by metaphor and visualization, and that remains
familiar and clear to novices because it accords with
everyone s everyday experience. In the present case, we
have chosen to use a synthetic human agent metaphor, and
this metaphor is one of many that might have been chosen
by a novice or expert. It just happens that the synthetic
human agent metaphor seems to suggest analogies that
draw close parallels between humans and agents for reasons
previously elucidated.

It has been stated that it is difficult, if not impossible, to
prevent an attack on a mobile agent that is operating on a
malicious host [19]. This is because the host completely
controls the environment and operation of the agent [19]. A
novice modeler might easily surmise the foregoing
technical fact by using the synthetic human agent metaphor
in the following fashion. We, as human beings, possess our
own bodies. Mobile agents, on the other hand, must rely on
hosts to provide them with a body, or computational ability,
when they are away from their home machine. Thus, there
is no way to prevent a malicious host from tampering with
the bodies of whatever agents it is hosting. This is a case
when the synthetic human agent metaphor seems to break
down. However, this seeming failure of the metaphor to
provide an exact analogy for the persistence and security of
a mobile agent is as instructive as any successful analogy
the metaphor might suggest. According to the suggested
analogy, then, the ultimate form of security for a mobile
agent would be for it to stay on its home machine, where its
body is safest. Obviously, this requires the agent to be
immobile. It seems that either we must acknowledge that it
is impossible to prevent attacks on mobile agents and do
our best to detect and minimize the effects of these attacks,
or we must make our agents immobile. Again, the object
here is not to suggest forms of security for mobile agents or
launch an attack against the concept of mobile agents, but
rather to demonstrate a style of reasoning that novice
modelers might develop through the use of the synthetic
human agent and related metaphors.

The synthetic human agent metaphor may also prove to
be useful in the development and visualization of agents
that must interact with humans (i.e., interactive agents,

67

[20]). An example of such work is the believable agent
described in [26] and [28]. It seems obvious that if human-
behaved agents are ever to interact with humans on a
regular basis, these agents should ideally have human-like
physical intricacies and inhabit a 3D world. Of course, this
sort of thing will not happen in the immediate future since it
requires great leaps forward in many research areas, but
there seems to be good reason to believe that the field will
eventually evolve in this direction.

Indeed, at least one commercial agent development
company, ReyesWorks (http://www.reyes-infografica.com/),
has already incorporated a synthetic human agent metaphor
in its agent development and visualization tools. See Fig. 1
for an example of synthetic human agent visualization
provided courtesy of ReyesWorks. Another company,
Blaxxun Interactive (http://www.blaxxun.com/), currently
operates Cybertown (http://www.cybertown.com/) in which
human users and their autonomous bots possess avatars that
interact with each other within a 3D virtual world.

Fig. 1. Photo of agent visualization provided courtesy of
ReyesWorks. Reprinted with permission.

C. Object-Oriented Thinking and Design

In part, the object-oriented approach to software design
and construction is concerned with modeling. Specifically,
it suggests that before any textual code is written, a model
of the software s functionality should be created which will
guide and inform the rest of the process in a top-down
fashion — from abstract/general to concrete/specific {29]. In
this effort, modularization is a primary design criterion
[29]. Inabroad sense, and as suggested by the term object-
oriented, these modules may be viewed as individual
objects, each with their own functions, interfaces, attributes,
and allowable operations. These objects confer many
benefits on the programmer, as they facilitate the easy
management of what otherwise might be significant
complexity, simplify the debugging process, and create the
potential for code re-use, to name a few [29].

It is not difficult to see the parallels between object-
oriented design and the world in which we live, both in an
abstract and a physical sense. In fact, a common way used
by instructors to teach novices to understand the object-
oriented approach is to draw parallels between it and the
real world. For example, when we are patrons of
restaurants, we deal with the waitstaff, and not directly with
the kitchen. In an object-oriented world, the waiter or
waitress is an object, we are objects, and the kitchen is an
object. The waitstaff serves as our interface to the kitchen.
We would violate the modularity enforced by the
commonly termed client-server relationship if we attempted
to deal directly with the kitchen as patrons. In fact, we do
not even need to know that the kitchen exists; the server can
simply deliver our food without our knowledge of where
the food came from or exactly how it was made. This
example also embodies the closely related ideas of
information hiding (i.e., the process of hiding details of an
object or function) and encapsulation (i.e., the inclusion of
a thing X within another thing Y so that the presence of X
is not apparent) [29].

This suggests a form of design and programming in 3D,
where these parallels can be surfaced visually during the
design and programming process. At the moment,
programmers typically may use pencil and paper to make
sketches of program modules and the relationships between
them, use visual programming tools, visualize these
modules mentally, or do none of the above. Some may
proceed directly to text coding. However, a characteristic
of all the methods mentioned above is that they are
implemented in two dimensions or less. If we suppose that
we are physical creatures that live in a 3D world, it may
follow that a better approach to design and programming
lies in the utilization of a 3D design and programming
environment. Such an environment would allow for the
incorporation of geometry and behavioral dynamics into
object-oriented design.

Object-oriented design currently has no specific
relationship with the use of 3D metaphors in programming.
However, a frequent occurrence during the design process
is that one or more abstract data types or functions are
created. If we must attempt to visualize an abstract
function such as a sorter, we may arbitrarily decide to
visualize it as a green pyramid. However, if it is possible to
visualize the sorter as an animated person sorting boxes, we
have a way to create a visual metaphor for the sorter. If we
use the animated sorting person, we have made an analogy
between the abstract sorter and the concrete, real-world
person. If the sorter is visualized as a person in this
fashion, there is no need to memorize the previous mapping
of the green pyramid to the sorter. The visualization of the
person and the metaphor introduced now provide this
mapping implicitly. In effect, the visualization provides a
semantic clue as to the object s function. This sort of use of
metaphor, then, may find great utility during design,
debugging, and code maintenance. It would be difficult to
support the argument that the green pyramid visualization is
preferable to the animated sorting person on grounds other

68

than the additional effort it would take to produce the
animated person. Finally, we predict that the extra effort
required to produce a metaphor visualization should
decrease to a minimal level with time and advances in
technology, so that a cost/benefit analysis should eventually
become favorable.

D. Software and Information Visualization

Software Visualization is primarily concerned with using
computer graphics and animation to illustrate programs,
processes, and algorithms [39]. Software Visualization
systems are sometimes used as teaching aids and also
during program development as a way to help programmers
understand their code [39]. Information Visualization is
primarily concerned with visualizing data as an aid in
interpreting and understanding the information [5]. In
general, the focus of Software and Information
Visualization is on visualizing programs or data after they
have been created using traditional means.

Several problems worthy of study have been encountered
during visualization research. These include problems of
abstraction of operations, data, and semantics, levels of
detail, scaling, and user navigation [39], [5]. Additionally,
visualization may occur in two dimensions, three
dimensions, or a combination of these. Obviously, there are
myriad ways to visualize programs and data, and perhaps
one challenge of visualization research is to find the most
usable and efficient ways of accomplishing this task. Any
two-dimensional (2D) or 3D programming method or
environment must tackle many of the same issues
encountered in visualization research. This suggests that
visualization is a sub-problem of any such development
system, either implicitly or explicitly.

E. Visual Programming

The field of visual programming integrates research from
other fields such as computer graphics, programming
languages, and human-computer interaction (HCI). One
aim of visual programming is to reduce the amount of text-
based programming and increase the use of image-based
programming. Two speculated benefits of such a migration
would be increased productivity of computer users, and
greater accessibility of computers to a wider general
audience. These speculations are based on the observation
that many people think and remember things in terms of
images. People relate to the world in an inherently
graphical way and use imagery as a primary component of
creative thought [36].

For many people, textual programming languages can be
difficult to learn and awkward to use. Programmers are
often faced with the problem of translating visually
formulated ideas into textual representations. Visual
programming could ease the language learning process and

help in the translation of visual ideas to the computing
environment by keeping ideas, to a degree, in the visual
domain. Also, visual development methods seem
intrinsically appropriate for the creation of interactive
simulations and scientific visualizations.

A visual programming language system may be purely
visual or may be a hybrid text and visual system. Purely
visual languages are characterized by their exclusive
reliance on visual techniques throughout the programming,
debugging, and execution process. An example of a
commercially successful and completely visual system is
Prograph [7]. In one type of hybrid system, programs are
created visually and then translated into a high-level textual
language. An example of this sort of hybrid system is
Rehearsal World [10].

Although visual programming emphasizes an effort
toward visual interaction in programming, this effort is not
likely to eliminate the use of text for practical reasons.
While it is possible to represent all aspects of a program
visually, such programs are less transparent than those that
occasionally use text for labels and atomic operations.
Further, limited use of text should not detract from visual
representations.

F. Work in VRML and Other 3D Authoring Tools

Modelers must choose the number of dimensions they
prefer to use when representing the operation of their
models and programs. Often, they decide to make use of
two dimensions or less. What are the advantages of using
the third dimension? First and foremost, we appeal to the
“real world” arguments that we have been using to justify
the synthetic human agent metaphor. Humans exist in a 3D
world — why shouldn t agents? Economic arguments
concerning the high cost of 3D rendering hardware are
becoming unfounded due to the blistering pace of
technological advancement and the resulting rapid drop in
hardware prices. Second, the third dimension simply offers
more space and freedom than two dimensions. Many of the
scalability and complexity problems associated with 2D
visualization can be overcome by the layering that is made
possible through the use of 3D visualization [42]. Of
course, 3D visualization introduces an additional set of
problems, such as managing user navigation, orientation,
and viewpoint [42]. However, as opposed to 2D
visualization, the problems associated with 3D visualization
seem to be solvable given appropriate engineering effort.

A more practical argument against 3D visualization is that
it may introduce unnecessary complexity, especially in
cases when the modeling scenario is simple. We do not
resist this assertion. In certain cases, 2D visualization or no
visualization may suffice to meet modeling and design
goals. However, we suggest that 3D visualization can
provide intrinsic benefits for novice modelers and in large
or complex modeling scenarios. In other instances, 3D

69

visualization can serve as a valuable augment to more
traditional visualization methods [23].

Many 3D geometry-authoring tools have been developed,
such as CosmoWorlds and 3D Studio MAX (Kinetix).
These tools are appropriate for creating 3D environments
and objects, and also for modeling relatively simple
behaviors of these environments and objects. Occasionally,
environments and objects created in this fashion are
endowed with the ability to interact with the user. Artists
are one community that make frequent use of these tools in
their work, as it provides them a relatively cheap, reusable,
flexible, and unique medium. Geometry, sound, light,
color, movement, and user interaction can be combined
through the use of these tools.

VRML (Virtual Reality Modeling Language) is a 3D
language that is based on the concept of a tree hierarchy of
nodes. Some reasons for its popularity include the fact that
it is non-proprietary, portable, and many browsers for it are
freely available. Another reason is the proliferation and
accessibility of the Internet. An approximation of generic
and object-oriented programming can be achieved through
the use of a type of VRML node called PROTO (short for
prototype) and the use of a type of structure called ROUTE
that can be conceptualized as a pipe that connects structures
to events. Code for behaviors of objects can be written in
ECMAScript, which is an ISO standard for the more
commonly known JavaScript. These attributes, among
others, make it attractive for an early attempt at
development of a 3D programming environment. VRML
isolates the user from the details of specifying and
rendering 3D geometry and thus it is more attractive for
novices than using, for example, the Java3D APl Also,
VRML seems to have commercial and developer
momentum in the X3D and XML initiatives that Java3D
seems to somewhat lack. This is not to assert that Java3D
is not a viable platform — some interesting work
incorporating VRML and Java3D in distributed agent
simulations is proposed in [21]. Despite its advantages, the
use of VRML is not without problems and difficulties,
especially concerning the implementation of data structures
and complex behaviors that are typical of modern
programs. Specific drawbacks of VRML will be discussed
in more detail in Section III, Part E, Sub-part 2.

An important feature of VRML, from the perspective of
rube™, is the ability to create custom prototype nodes that
can be reused. Another important feature is the ability to
incorporate scripts inside these custom nodes that imbue
them with a great range of physical and/or functional
behaviors that are not native to the VRML language.
Lastly, VRML provides ROUTEs for communicating the
occurrence of events throughout the world. These events
drive behaviors of objects in the world.

Since rube™ is primarily implemented in VRML and
ECMAScript, we provide a short tutorial below. The
tutorial is a more in-depth treatment of the language for

those that might wish for one, and can be safely skipped (to
Section II, Part G) by readers who are more interested in the
abstract ideas behind the rube™ development process.
Note that this tutorial is not extensive enough to allow a
novice user to begin programming in VRML and
ECMAScript. However, it should suffice to give the reader
general ideas that capture the structure, operation, and
interaction of VRML and ECMAScript.

A VRML world is made up of nodes, which are types of
object. Nodes contain fields, which are properties of the
object. Fields can be anything, from a size of a box, to
another node inside the first. Some nodes have a
children field, which can contain other nodes. Nodes
can be nested inside one another in this way, which yields a
kind of hierarchy tree of nodes.

The specification of geometry in VRML is paramount, so
we give a generic geometry declaration below. There are a
few nodes shown, such as Appearance and etc., but these
can be ignored for present purposes. To add a shape to the
world, we might add the following to a VRML file:

Transform

{

children
[
Shape

{

appearance Appearance

{

material Material {)

}

geometry Box {}
}
]
rotation 1 1 0 0.785

}

The above adds a Shape node, which contains two
fields for describing an object. These are the appearance
and geometry fields, which describe the look and shape
of the object, respectively. The geometry field specifies a
Box with default values and colors (default values are
assumed by the VRML interpreter when field values are
omitted or left empty by the programmer). Fig. 2 shows the
box we added to the world, slightly rotated about the x and
Vv axes.

Fig. 2. A VRML box rotated about the x and v axes.

70

A common type of VRML node is the Transform,
whose partial language specification is given below:

Transform
eventIn MFNode addChildren
exposedField SFVec3f center 0 0 0
field SFVec3f bboxSize -1 -1 -1

}

The interesting features of this node are eventIn,
exposedField, andfield. AneventIn of any node
may be thought of as a hook for incoming events. In the
Transform, the eventIn addChildren accepts
input of type MFNode. An MFNode is one of several
primitive data types available in VRML. When an
MFNode arrives at the eventIn addChildren, its
contents are added to the Transform s children. If the
incoming MFNode contains a geometry node of some
sort, this will then appear in the world, whereas it may not
have appeared in the world at all until the event arrived. If
the Transform node moves later, its new child will move
along with it. A second notable item in the Transform
node specification is the bboxSize (bounding box size)
field. Afield is simply a value holder. Since it is not
an eventIn, the value ofa field is set when it the node
is declared and cannot be changed afterward, unless it is
coupled with an eventIn through scripting (described
shortly). Also, the VRML interpreter does not make the
value of a field accessible outside of the node. An
exposedField can be thought of as an integration of an
eventIn, field, and eventOut (to clarify,
eventOut is not an explicit element of the Transform
node specification). The VRML interpreter makes values
of exposedFields accessible outside of a node. An
exposedField can be altered in a way similar to an
eventIn. This is accomplished by specifying the
exposedField to be altered with a set_ prefix, (e.g.,
set_center). When an event arrives at an
exposedField s eventlIn, its corresponding field
value (e.g., center) is changed. As soon as the field
value is changed, the exposedField sends an
eventOut to the field name followed by a _changed
suffix (e.g., center changed). The eventIn and
eventOut field names (set_xyz and xyz_changed)
are implicitly implemented for all exposedFields by
the VRML interpreter, so they need not be explicitly
declared upon node construction, for example when the
user is specifying custom prototype nodes (PROTOs).

An example “toy” PROTOQ, FOO, is shown below to aid
the discussion. In the declaration portion (header), the
eventIn set_number will receive integers of type
SFInt32, the number field will hold a value of
SFInt32, and eventOut number changed will send
integers of type SFInt32. The exposedField
dummyval operates like any other exposedField. To

demonstrate the implementation of custom behaviors, we
include a script in the FOO PROTO:

PROTO FOO
[
eventlIn SFInt32 set_number
field SFInt32 number 0
eventOut SFInt32 number_changed

exposedField SFInt32
]

{

Transform

{

children
{
DEF MyscriptS Script

dummyval 9

eventIn SFInt32 set number IS
set_number

field SFInt32 number IS number
eventOut SFInt32 number_ changed IS
number_changed

url “javascript:
function set_number (value, ts)

{
number = value;
number_changed =

}n

value;

This simple PROTO introduces some new concepts to our
discussion. The first of these is the DEF statement (i.e.,
DEF <ArbitraryNodeName> <node type>). DEF (short for
define) names a node for future reference and for reuse in
the same world. A second concept introduced is the
Script declaration. Note the use of identical field names
in the Script declaration as those of the PROTO
declaration. In fact, the use of the IS modifier makes these
fields identical to the fields of the PROTO. For example, if
an event arrives at FOO s eventIn set_number, the
event is also passed to MyscriptSs corresponding
eventIn of the same name. Also, if Myscripts
produces an event for the eventOut
number_changed, FOO also sends this event to its
eventOut number_changed. A third concept
introduced is the JavaScript function
set_number (value, ts), where value is the
SFInt32 value that is passed in to the function, and ts is
the VRML timestamp for the event. The set number
function has the same name as the eventIn
set_number of MyscriptS. The effect of this is that
when an event arrives at the eventIn set number of
Myscripts, the set_number function is called; the
identical mapping of the function name to the name of the

71

script s appropriate eventIn is essential. A fourth
concept introduced is the use of the assignment (=) operator
in the script. In the case of number = wvalue, we have
assigned the number field of the script a new value. In
the case of number changed = value, we have
caused MyscriptS to produce an eventOut
number_changed, that will make its way to FOOs
eventOut number_changed.

Now all that remains to be described is a method for
“piping” events into and out of nodes. In VRML, this is
accomplished through the use of ROUTEs. An example
implementation of ROUTES in a short, top-level VRML file
might ook like this:

EXTERNPROTO FOO
[

eventIn SFInt32 set_number
field SFInt32 number
eventOut SFInt32 number_ changed
exposedField SFInt32 dummyval

] “foo.wrl”

{

DEF F1 FOO {}
DEF F2 FOO {}

}

ROUTE Fl.number_changed TO F2.set_number
ROUTE F1l.dummyval_ changed TO
F2.set_dummyval

In the above, we have first declared to the VRML
interpreter to look for the FOO PROTO node definition
externally (EXTERNPROTO) in a separate file (specified by
“foo.wrl”). The skeleton of FOO is provided as a sort of
declaration in a similar manner to the standard C
convention for declaring function signatures at the head of a
file. Next, we create two instances of FOO — F1 and F2.
F1 and F2 have independent existences from each other
(e.g., their fields can take on different values from each
other). Finally, we use ROUTES to connect F1 eventOut
fields to F2 eventIn fields. When F1 performs its
functions, it will send events to F2 that will initiate
functions in F2. Unfortunately, the above program will not
perform any function for at least one reason: We have not
specified any structure or node that will initiate an event in
F1 to start the chain of events we have constructed.
However, the foregoing should help pull together most of
the concepts that are relevant to understanding the structure
and operation of a good deal of VRML PROTO and script
design, and thereby rube™ s implementation methodology.
If the reader would like further VRML tutorial, several sites
on the WWW can be found for such purpose by conducting
a search using one of the popular WWW search engines.
For a more in-depth treatment, two good VRML references
are [6] and [27].

Finally, VRML worlds are viewed with special browsers.
such as Blaxxun Contact 4.3. and CosmoPlaver 2.1.1.
These browsers allow the user s avatar to navigate through
the 3D world and examine its contents. A prototypical
browser dashboard (CosmoPlayer 2.1.1.) is shown at the
bottom of Fig. 3.

Seek Zoom Rotate Pan

View Selector

Fig. 3. Browser controls of CosmoPlayer 2.1.1.

G. 3D Programming

Two goals of 3D programming are to visualize program
execution with 3D graphics [24], and to enable the user to
program using executable 3D graphics. A brief review of
two approaches to this problem is given below.

1) CUBE

Marc Najork s CUBE is an example of a 3D visual
programming language that has a 3D syntax. In this
language, programs consist of an arrangement of 3D shapes
instead of a linear stream of text. CUBE supports
recursion, function mapping, type checking, and user-
defined types. One aim of the language is that of
supporting virtual-reality based editing of programs for the
user [31].

The CUBE language is divided into two fragments. The
first fragment consists of predicate definitions and logic
formulas, and the second fragment consists of type
definitions and type expressions. 3D cubes represent terms
and atomic formulas in the logic fragment. Pipes connect
the arguments of predicate applications (i.e., atomic
formulas), forming a data flow diagram. The third
dimension is used to group various 2D diagrams together.
Sets of base types and primitive predicate definitions are
provided initially. The prototype implementation of CUBE
functions by translating visual programs into a text format,
and then operates on the text format [31].

72

CUBE docs not make extensive use of visual metaphor.
However, it does make use of the data flow metaphor on a
high level and as a guiding paradigm for the representation
of the language [31]. As described above, this metaphor
also happens to extend into the 3D realm. From this, it can
be seen that the use of metaphor need not be limited to its
typical, everyday senses, but also can be used as a guiding
framework for a form of representation.

2) Programming by Example/Demonstration

Programming by Example and Programming by
Demonstration (PBE/PBD) are synonymous terms for a
method of programming described by the following phases:
1) A user performs a series of steps on an example of some
problem, 2) the computer records the steps, and 3) the
computer applies these steps on some new, similar example.
The programs generated in the recording step may not be
applied exactly as they were recorded, but may adapt
according to differences in future examples [25]. This
sometimes requires such programs to be able to generalize
the steps to new instances, and to perform inference in
varying degrees, from no inference to a great deal of
inference [30].

One focus of PBE is that of catering to the novice or non-
programmer. For a novice programmer, there is usually a
significant difference between the computer s
representation of a problem and his or her own. As
programmers become more experienced, they become more
conditioned to think of a given problem in the context of
the computer s representation, since the problem must
ultimately be expressed in this fashion and there has been
no efficient way to communicate the programmer s
representation to the computer. PBE would bridge this gap
by “bringing the computer closer to the programmer” rather
than vice-versa [37].

PBE attempts to lower the barriers between novice users
and computer programming by eliminating, as much as
possible, the idiosynchracies of traditional programming
language syntax. It attempts to provide visual, interactive,
intuitive, and functional interfaces for program
construction, and performs inference (to varying degrees) to
reduce the amount of inference that must be performed by
the programmer [30]. A recent trend in the PBE
community has been to extend into the 3D programming
language arena [22], [38]. This extension is natural since
we are conditioned to think of the world around us in three
dimensions, and so this is one way to bring the computer
closer to the programmer. Attempts may be made, so far as
possible, to keep programs and constructs in concrete
domain terms rather than abstract computer terms [34]. In
short, a goal is to let an end-user program without realizing
that he or she is programming.

Ken Kahn s Toon Talk is a PBD system designed for
children in which “the programmer is a character in an
animated virtual world in which programming abstractions
are replaced by their tangible analogs.” Data structures are

given 3D geometry, such as a box with holes, into which
different objects may be placed. Birds and nests perform
send and receive operations. Robots are guarded clauses
that are trained to perform actions when they receive boxes.
The programmer may generalize robots by using a vacuum
cleaner to remove details from the robots guard clauses
[22]. It can be seen here that Toon Talk makes use of visual
metaphor.

H. Comparison of the Current Research with Related
Research

The current research, with its focus on extending
programs and their components to resemble real-world
objects (in an abstract, non-visual sense), has many
parallels with object-oriented design approaches to
programming. Since these parallels are somewhat obvious,
they will not be elucidated here. However, the current
research also seeks to give these objects 3D representations
that convey meaning through visual metaphor. In this way
it is unlike, and could be considered an extension of object-
oriented design. '

Software and Information Visualization research and the
current research share several problems in common. These
include abstraction vs. concretion, levels of detail,
navigation, and many others. Without doubt, solutions to
these problems that have arisen and will arise during the
course of either line of research should easily translate into
the other line. However, in the previous description of
Software and Information Visualization research it was
stated that a general focus of that research is on visualizing
programs and etc. after they have been created using
traditional means. Therefore, this research tends not to
focus on the immediate aspects of program development,
such as the potential for creating a 3D programming
interface for users. Furthermore, metaphor is not
commonly considered during such research. In these ways,
the current research is unlike, and could again be
considered an extension of Software and Information
Visualization.

Work in 3D authoring tools and the current research are
alike inasmuch as objects are identified by their geometry
and have specific physical and behavioral attributes. The
current research was carried out in part within a 3D
authoring tool (CosmoWorlds) and in large part within a 3D
language (VRML). However, the current research is
distinguished from typical 3D authoring since most of the
work was done in a text editor (for VRML coding), and a
great deal of scripting was performed to make the behaviors
of the objects in the world complex, dynamic, and
interactive. The heavy use of PROTO nodes and ROUTEs in
the current research also distinguishes it from
straightforward VRML environments.

The current research should be considered as visual
programming research — it is most like CUBE and PBE, but

73

is significantly unlike these examples of visual
programming in several respects. We did not use a 3D
editor significantly during the programming effort. The
“dragging and dropping” performed was on 3D objects that
had only geometric representation. Unlike CUBE, there
was no formal metaphor that informed a 3D syntax, nor was
a set of 3D representations of primitive data types and
operations available for use. Also unlike CUBE, type
checking was performed exclusively by the programmer,
and the text program was translated to the visual program.
The use of metaphor and geometric shape in the current
research was more free-form than that of CUBE. The
current research is unlike PBE inasmuch as the computer
did not record the programmer's steps or perform any
generalization or inference. Also unlike PBE, the use of
metaphor in the current research was user-defined.

I Rube™ s Relationship to OOPM

In previous research, we have designed and implemented
an object-oriented multimodeling and simulation
application framework [8], [11]. OOPM (Object-Oriented
Physical Multimodeling) is a system that resulted from this
research. OOPM extends object-oriented program design
through visualization and a definition of system modeling
that reinforces the relation of model to program. One
feature of OOPM is its graphical user interface (GUI),
which captures model design, controls model execution,
and provides output visualization. Another feature is its
Library, which is a model repository that facilitates
collaborative and distributed model definitions, and that
manages object persistence. Some dynamic model types
that OOPM models are composed of include Finite State
Machine, Functional Block Model, Equation Constraint
model, and Rule-based Model. Model types are freely
combined through multimodeling, which glues together
models of same or different type [8].

OOPM research evolved into research with rube™, and
OOPM and rube™ are closely related inasmuch as they
have nearly identical goals. They both make use of the
listed dynamic model types within a multimodeling
paradigm. The characteristics of rube™ may be viewed as
the extension of the characteristics of OOPM into the third
dimension. The extension includes an implementation of a
web-based toolkit written using VRML. A few significant
differences between rube™ and OOPM are that 1) rube™
is implemented in a 3D environment, while OOPM is
implemented in a 2D environment, 2) rube™
implementation technology is still in_its formative stages
(there is no full-fledged GUI for rube™ as yet), and 3) the
use of metaphor as a design aid (and otherwise) will play a
much larger role in the development of rube™ than it
played in the development of OOPM.

What is the utility of visual modeling and simulation, and
what is the connection between it and programming?
Visual modeling and simulation in 2D is fairly standard in

most simulation domains, especially for manufacturing and
digital circuit design. On the issue of the relation of
programming to modeling, therc has long been a
convergence of program to model [13], with the Unified
Modeling Language (UML) taking center stage as a
frequently-employed approach to software design. Thus,
programs can be viewed as models, and so visual programs
can be viewed as visual models.

HI. EXAMPLE

Here, we demonstrate the practical application of the
current research through the presentation of an example
program. The program represents a greatly simplified
operating system task scheduler that is synthesized utilizing
metaphors and 3D visualization. Several issues that arise
during the programming effort are discussed in Part E.
Based on this example it is found that, though not without
difficulty, this approach to programming is viable and
worthy of further research.

A. A First Attempt: A Simplified Operating System Task
Scheduler/Queuing System

Since we make the claim that 3D metaphor can be used as
a high-level design aid, we set out to choose for our
example a complex program that should be familiar to our
audience. Programs meeting these criteria should best
demonstrate the utility of 3D metaphor as a design aid.
Though there are many choices that meet the familiar and
complex criteria, we focus here on the operating system as
a generic type.

In our example, we envision a MINIX-like OS, which
can be characterized by hierarchical, vertical layers (top to
bottom): 1) user processes (e.g., word processor), 2) server
processes (e.g., file system), 3) I/O tasks (e.g., disk), and 4)
process management (e.g., scheduling and communication).
A graphical representation of these layers can be seen in
Fig. 4. In our example, we focus on the process
management portion of the OS, and specifically upon a
hypothetical task scheduler in that layer. In an abstract
sense, the task scheduler may be viewed as a complex
queuing system, or QNET,

User Processes (e.g., word processor)

Server Processes, (e.g., file system, memory manager)

1/0 tasks (e.g., disk, terminal, clock, system, ethernet)

Process Management

Fig. 4. Graphical representation of the vertically layered
structure of a MINIX-like OS.

74

B. Metaphor Approach and Mappings

The sort of vertically layered structure of the OS
described above lends itself naturally to an architectural
metaphor, where the OS itself may be visualized as a
building, as pictured in Fig. 3. The layers of the OS then
correspond to the different floors of the building, as shown
in Fig. 6. This is the metaphor we choose. The value of
thinking of agents living in the building is at least as great
as the value of using the 2D diagram that expresses the OS
level hierarchy (Fig. 4), with the added benefit that design
ideas may be suggested by the architectural metaphor (e.g.,
there could be doors between level to provide security).
Besides floors, a couple of things that can typically be
found inside buildings are people and furniture.

Keeping these things in mind, we now proceed to mode!
the operations of the layers of the OS. The primary
interactions between the layers of our hypothetical OS
occur through message passing. Although we do not
immediately focus on a choice of metaphor for these
interactions, we choose a prospective metaphor and set it
aside temporarily in order to concentrate on the
construction of a single layer. The metaphor we choose for
message passing is that of a person transporting a briefcase
that contains the message from one place to another, as
depicted in Fig. 7. Note that the briefcase metaphor for
message passing follows naturally from the synthetic
human agent metaphor and does not overlap or conflict
with the architectural metaphor.

First, we decide to model the task scheduler portion of the
process management layer. Our example task scheduler is a
non-preemptive, dynamic priority scheduling system that
contains tasks, four priority queues, and the following five
types of physical devices with their associated queues: 1)
CPU, 2) DEV (i, external device), 3) COM (ie.,
communication, such as via the parallel, serial, and USB
ports), 4) MEM (i.e., memory load/store), and 5) /O (i.e.,
input/output. such as disk read/write). Expanding our
previous metaphors, we map a task to a person (see Fig. 8)
and a device to a service facility which is a person behind a
desk (see Fig. 9). The priority and device queues map
directly to physical space as waiting lines (sce Fig. 10).
Persons can travel over paths between the devices and
queues. Taking stock of our progression so far, overall we
have at least a minimal way to represent the significant
portions of our hypothetical task scheduler.

Operating
System
(08)

Building ~—p

Fig. 5. Metaphor mapping of the building to the OS.

HEREIE A ETL SN

One floor of
the building

One layer

—» ofthe OS

Fig. 6. Metaphor mapping of the floors of the building to
the layers of the OS.

Briefcase Message

passing

——p

Fig. 7. Metaphor mapping of briefcase to message passing.
Picture of mapping not shown because this aspect of the OS
has not yet been implemented.

75

Human Task

Fig. 8. Metaphor mapping of a human to a task.

Person
standing
behind a desk

:

OS device

Fig. 9. Metaphor mapping of a person standing behind a
desk (service facility) to an OS device.

Waiting lines

!

Device
queues

Fig. 10. Metaphor mapping of a waiting line to a device
queue.

C. Implementation

We are now concerned with the details of implementing
the above task scheduler along with its metaphors in a 3D
environment. In the context of VRML, we create PROTOs
for each of the items in our task scheduler that will be used
again and again. A VRML convention for naming PROTOs
is to fully capitalize the PROTO name, e.g. MYPROTO. We
create the following PROTOs: 1) PERSON, 2)
CPUFACILITY, 3) FACILITY, 4) QUEUEMANAGER, and
5) PATH. PERSON is described below. The CPU has
special management functions, so it is given its own
PROTO. All devices besides the CPU will be instances of
the generic FACILITY. When a PERSON reaches a

FACILITY, they are held there for some random amount
of time and then released. Instances of QUEUEMANAGER
will manage each of the priority queues and the queues
leading to each of the service facilities. PATHs connect the
devices together physically and manage the movement of
persons throughout the world.

Each of the PROTOs mentioned has a physical geometry
node included inside that will give it an identifiable and
appropriate physical presence in the 3D environment.
Some of these physical geometry nodes are modeled in a
3D authoring tool prior to their inclusion in the PROTOs.
For example, instances of PERSON look like a stylized
version of an actual person, the geometry of which is
modeled in CosmoWorlds. These appearances are
according to the metaphors we are using.

Some items of note within the PROTOs are the attribute
fields they include in their declarations. For example, the
PERSON PROTO shown below has the fields 1) task type
{one of CPU, DEV, COM, MEM, or 1/0), 2) CPU run time
left (only relevant if this is a CPU task), and 3) task priority
(from 1 through 4). The implication here is that each
instance of PERSON in our task scheduler carries around its
own state information, which can be accessed and modified
by other components of the scheduler. Other instances of
PROTOs have similar ways of utilizing attributes. Two
example PROTO specifications used in the present research
(those for PERSON and FACILITY) are given below:

PROTO PERSON
[
exposedField SFString task_type
exposedField SFInt32 task_cpu_run time
exposedField SFInt32 task _priority

eventIn SFBool running
eventIn SFBool transit
eventIn SFBool waiting

]

PROTO FACILITY
[
field SFString facility name “NoName”
field SFNode facility geometry NULL
field SFInt32 min random_service time
field SFInt32 max_random_service time

field SFFloat sound_intensity 1

eventIn SFTime time_step

eventIn SFNode task_arrival

eventIn SFTime start_music

eventIn SFBool input_queue_lﬁempty

eventIn SFBool output_queue_1_full

eventOut SFFloat set_ sound

eventOut SFBool
get_task_from_input_gueue_1

eventOut SFNode

send_task_to_output_gqueue 1

76

After the objects of the task scheduler have been
physically arranged in the environment, we have a static
representation of the example task scheduler. The next job
is to make the task scheduler function dynamically and in
an animated fashion. This is accomplished in VRML
through the occurrence and utilization of events. Events arc
generated and sent through ROUTES to their destinations.

Note that PATH is a metaphor in the following respect: it
has a parallel function as that of a ROUTE. PATH
physically transports movers through the world in a like
manner as ROUTE transports events through the world. Fig.
11 shows an example mapping of a ROUTE structure to a
use of PATH for transporting a task from a queue to a
service facility. PATHs are given physical geometry that
can be turned on or off by the user.

PATH
> Facility.task_arrival

i ROUTE i

Nodel.eventOut >
Fig. 11. Metaphor mapping of PATH to ROUTE.

Queue.send_task

Node2.eventln

Two more PROTOs arc created to aid the
implementation: 1) MFACTORY and 2) RANDOMIZER.
MFACTORY generates people (tasks) dynamically, and
RANDOMIZER randomly sets the fields of the persons to
specific task types and assigns them a CPU run time if
necessary. The MFACTORY s and RANDOMIZER s logical
and functional location in the 3D world is inside a void area
where tasks are created and their attribute fields are set.
However, these two PROTOs have little to do with our
initial metaphors and merely serve as hooks for the future
addition of other components. As such, it is not necessary
for them to have a physical presence in the world, and
therefore they have no geometry associated with them. If
desired, geometry could be added to them later.

Next, we physically arrange the components of the OS
task scheduler in the VRML world. An overhead schematic
of the task scheduler layout is given in Fig. 12.

Priority CPU DEV
queues
Void COM
area
MEM
1/0

Fig. 12. Overhead schematic of task scheduler component
layout. Arrows represent paths and queues for tasks.

Lastly, a finite state machine (FSM) is placed inside each
person that reflects the associated task s current state: 1)
Waiting, 2) Running, and 3) In Transit. These states
roughly correspond to the familiar waiting/running/ready
FSM for processes in an OS task scheduler, respectively.
The user is able to zoom in on any particular person and see
through the person s transparent skin into the person s
chest, where the FSM is shown progressing through its
various states, as pictured in Fig. 8. In addition to the FSM
changes that can be viewed, the color of a person s skin
changes to a color assigned to each state using a traffic light
metaphor: 1) Waiting — red, 2) Running — green, and 3) In
Transit — yellow. The addition of the internal FSM and the
traffic light metaphor help demonstrate both the
multimodeling and multimetaphor aspects of rube ™.

D. Operation

When the program is initialized, MFACTORY generates 10
tasks inside the void area. Person/tasks have internal
accounting abilities — they are individuals, and maintain
their own task type, remaining run time, and priority
information, which are utilized especially by the
RANDOMIZER and CPUFACILITY. The 10 tasks move
along a path to the RANDOMIZER, where the tasks fields
are set. The randomizer begins with a 50/50 probability of
assigning a task as a CPU task vs. another device task.
Later, the user can alter these probabilities using a heads-up
display (HUD). The initial task probability weightings are
1) CPU - 20, 2) DEV - 5, 3) COM - 5, 4) MEM - 5, and 5)
I/0 - 5. No control over CPU weight is given to the user
from the HUD since changing the weights of the devices
uniformly is equivalent to changing the weight of CPU
tasks. If a task is a CPU task, it is also randomly assigned a
CPU service time that the CPU will need to dispatch that
task. Fields in the RANDOMIZER declaration, however,
determine the randomization of CPU task service time, so
the user has no control over it from the HUD. If a task is
something other than a CPU task, it is assigned a service
time of zero (that is, the CPU will send it on its way to the
appropriate device immediately upon arrival at the CPU).

All tasks start out with a priority of (1) upon leaving the
RANDOMIZER in the void area. When a task leaves the
RANDOMIZER, it enters the first priority queue leading to
the CPU. All queues, including the CPU priority queues,
are managed by instances of the QUEUEMANAGER PROTO,
which send out waiting tasks upon request from the CPU
and devices.

When a task reaches the CPU, if the task is a CPU task, it
gets service from the CPU. A backbeat soundtrack plays as
the CPU is serving a task. The CPU determines how much
time to spend servicing the task as follows: Priority 1 tasks
are given 10 seconds, which is the priority 1 time quantum.
If this quantum is expended before the total service time for
the task is complete, the CPU assigns the task a priority of
2, updates the remaining total service time field inside that

77

task, and sends it to the second priority queue. The other
priority queues work the same way, except their CPU time
quanta are 20, 30, and 40 for priorities 2, 3, and 4
respectively. Time quanta for each priority are determined
by the CPUFACILITY declaration. If a task reaches
priority 4, goes to the CPU, expends the 40 second time
quantum, and is still not finished executing, the CPU leaves
the task at priority 4 and sends it back to the fourth priority
queue. When a CPU task's total service time is expended, it
is sent back to the void area. The CPU determines which
queue to draw tasks from based on the following rule: Draw
a task from the highest priority queue that has a waiting
task (by waiting, the task is meant to be at the head of the
queue, and not traveling/in transit from the end of the queue
to the head). Lower priority queues may starve, but this is a
danger of any priority queuing system that is not
implemented in a round-robin fashion. A round-robin
system would be simple to implement here, if so desired.

When a task reaches the CPU, if the task is not a CPU
task, it is sent along to the appropriate peripheral device
queue. There is no priority queuing at the peripheral
devices — these queues operate on a first-in-first-out basis.
When a non-CPU task arrives at its device, the device
decides on a random service time for that task. Fields in the
FACILITY declarations determine the randomization of
service time at peripheral devices. While a peripheral
device is serving a task, a specific sound can be heard: 1)
DEV - church bell, 2) COM - blowing wind, 3) MEM -
running water, and 4) I/O - rain and thunder. When the
task s service time is expended, the task is sent back to the
void area.

In summary, proceeding in a top-down fashion, we first
encounter the shell of the building of the OS as pictured in
Fig. 3. Taking off the shell, we see a series of floors
stacked one on the other as shown in Fig. 13. On one of
these floors we see the task scheduler operating as pictured
in Fig. 13 and Fig. 14. Inside the task scheduler, we see
persons moving along paths and through queues toward
service facilities, where they spend some random amount of
time receiving service as shown in Fig. 15. As persons go
through the Waiting/Running/In Transit states, their skin
color changes and their internal FSM changes state as
shown in Fig. 16. Service itself is associated with a unique
type of sound that continues as long as that type of service
is being provided. When their service at some facility is
complete, persons leave the service facilities, enter a void
area, and have their attributes reset to start the process
again. This “recycling” of persons avoids destroying and
regenerating them in order to continue the simulation.
Lastly, a HUD is provided, which allows the user to turn
the geometric representations of the paths on and off and
alter the random probabilities of task type assignment, all
while the simulation is operating.

Fig. 13. The floors of the OS building with the task
scheduler shown on the top floor.

1) werghe TN

Fig. 14. Top view of the task scheduler. The CPU facility
is shown at top center, with its priority queues just below
and to the left of it. DEV, COM, MEM, and /O service
facilities are on shown on the right, top to bottom
respectively, with queues to the left of each.

Fig. 15. Close-up view of task scheduler operation.

78

Wortiy Karing

e

T R
gy

It 1ms

——
.

ke

Fig. 16. A task s internal FSM with the In Transit, Waiting,
and Running states. The task shown is being serviced at the
CPU.

The actual implementation of the above-described 3D
world/program is located at the following URL at time of
writing:
http://www.cise.ufl.edu/~fishwick/rube/worlds/os.html

E. Issues

1) Modeling, Metaphor, and the “Real World”

The choice of the architectural metaphor for the OS may
guide the rest of the design process, but it is not the only
possible metaphor that can be chosen. This choice is left to
the programmer, which coincides with the suggestion in [2]
that the use of metaphor is most effective when the
programmer has the freedom to produce his or her own
metaphors. Neither is it necessary that the architectural
metaphor exclusively dominate the rest of the design
process. There is great freedom in subsequently choosing
peer or sub-metaphors that may or may not have some
relation to the architectural metaphor. These choices may
lead to a multi-metaphor construction. The importance of
this concept is that one need not necessarily come up with
one over-arching metaphor that can include every possible
circumstance that will need to be modeled in advance.
Note here that we do not return to the person and briefcase
message passing metaphor, although we must do so
eventually. The point is that we do not need to expand on it
immediately.

Note that we attempt to physically surface as many
relevant attributes of the metaphor and object we are
modeling as possible. This is key to the use of 3D
metaphor. If it cannot be seen visually, the utility of the
metaphor may be greatly reduced.

We do not claim that metaphor should be applied in all
situations. It is unlikely that metaphor may be easily
applied to every object or process that can be modeled. It is
also doubtful that all modeling or programming tasks have
a metaphor that is a “perfect fit.” When a programmer must

deal with a program s atomic operations, it is possible that
there may be no appropriate metaphor, or the use of
metaphor may not contribute to the programmer s
understanding of the situation. This barrier in the use of
metaphor will remain until such time as programmers no
longer need to deal with the details of traditional
programming.
metaphor can be of some aid and may simplify the
programming task in many instances.

2) Implementation and Technical Issues

VRML is not a full-blown object-oriented language.
VRML provides encapsulation of fields, and uses ROUTES
to provide circuit-like access to fields. However, this sort
of implementation does not yield traditional or complete
encapsulation. Additionally, there is no inheritance in
VRML in an object-oriented sense. These factors and
others make it difficult to achieve object-oriented design
goals within VRML. PROTOs, ROUTEs, and scripts alone
are not enough to satisfy object-oriented design goals,
because there are few restrictions on their structure and
function.

The standards for VRML are widely and differently
interpreted, resulting in different and sometimes
unpredictable behavior between browsers. This is
especially evident for event ordering and handling. Overall,
it becomes difficult to produce consistent behavior between
browsers, and programmers of VRML may find themselves
inconvenienced by the necessity of adapting their code
depending on the type of browser being used.

There is no good 3D editing tool that allows one to
“program” VRML using 3D graphics, although tools are
available that export VRML and some VRML-specific
geometry tools do exist. Ideally, we would like to be able
to write a PROTO, place it in a roolbox, and then later gain
drag-and-drop access to that PROTO through a 3D editing
tool. "Then we would like to connect ROUTES like pipes to
and from our different objects and PROTOs in the 3D
editor. We did not use such an editor because none exists
yet — it remains to be developed. However, the basic ideas
described in this research will be easily and intrinsically
applicable in making use of such an editor when one is
finally developed.

One has to separate the interface used to create the 3D
program from the structure and representation of the 3D
program. Creating graphical user interfaces is highly time
intensive, and our fairly small research group has chosen to
focus on the representation and visualization issues, while
using off-the-shelf 3D tools to aid in the creation of the
geometry. Our creation of VRML need not be text-based.
We use and promote tools such as CosmoWorlds and
Internet Scene Builder (Parallel Graphics). However, these
tools do not support the ability to assign one piece of
geometry as a dynamic model of another, and so we have to
manually encode these semantics using the VRML

Rather, we claim that the use of 3D.

79

prototyping mechanism, which is poorly supported by the
available VRML world generation tools. Moreover, the
actual semantics must be coded in JavaScript, as they are
not automatically generated from the 3D model objects.
This is similar to the general state of the art in 3D game
engines: the semantics must be separately applied using a
scripting language even though the levels can be
interactively created. This represents an important first step
toward an eventual, complete 3D programming
environment that addresses both the representational as well
as the HCI issue of immersive and interactive “3D code
development.”

Lastly, VRML is an interpreted language. As
complexity of a given world increases, there can be a
noticeable drain on computer resources, even with very fast
PCs. Also, there are no good debugging tools for VRML,
as browser error messages can be cryptic. This has the
effect of lengthening the design-debug cycle.

Thus, we do not support the idea that VRML should be
used to implement a functional operating system or any
other production system in which performance or
programmer productivity is an issue. Further, VRML is not
the only possible vehicle for demonstrating the rube™
methodology — the choice of language is incidental to the
methodology. VRML was chosen for its adequacy in the
task at hand and its practical expediency in producing
relatively simple visual simulations, rather than for any
great technical merit it may (or may not) possess as a
programming language.

While the OS example may be interesting, the efficiency
and expeditiousness of it for designing and implementing
an actual, practical OS task scheduler is beyond discussion.
This is because the design task (that of designing an OS and
its task scheduler), minus the 3D metaphors, had already
been largely completed prior to the beginning of the project
by virtue of the fact that we had chosen MINIX as a rough
model. Overall, we showed that we could represent an OS
task scheduler using the rube™ paradigm. It is reasonable
to assume that, during the representation process, we
created the tools necessary to be able to generate an OS
task scheduler design. However, the design and generation
of a novel program by a novice would better demonstrate
the utility of 3D metaphor in the design task. As far as the
actual implementation of an OS task scheduler is
concerned, the visualization itself would make the
scheduler far too slow to perform the scheduling task
efficiently. Eventually, the visualization would probably be
stripped away to boost efficiency, perhaps only to resurface
again during debugging efforts.

3) Aesthetic Issues

The current research brings out the issue of aesthetics in
programming in a novel way [13]. At the moment,
programmers may discuss the aesthetics of programs that
exist as text code. These discussions may include the
subjects of code commenting, brace indexing, overall

design efficiency, and etc. Sometimes, aesthetics may not
be considered at all. With the introduction of 3D metaphor,
aesthetics play a larger role, and the potential develops for
programs to evolve into a type of visual art.

The increased use of metaphor in rube™ is predicated on
the idea that aesthetics will continue to play a more
important role in modeling and programming. The history
of book-making lends us an analogy that strengthens this
claim. The first books were expensive and made for a small
readership. The goal was to create a book for one
individual or a small group. When Gutenberg created the
movable type press, books could be mass-produced for a
much wider readership. It was no longer necessary to hand-
create books and books became less costly to produce. The
shift was away from a one to onc relationship of producer
to consumer to a one to many relationship. Now, with our
increased technology, we are able to return to one to one,
albeit with a much more efficient delivery mechanism.
Media is returning to a more focussed transmission, away
from broadcasting. The idea is to benefit the individual
directly, without creating generally palatable media. The
renewed focus on the individual promotes aesthetics and
personal preference in modeling.

In the present example, some effort is made to have the
program interact with and entertain the user. This is done
with view changes, animation, and sound. These aspects of
the research should be attractive to novices. It should be
noted that the programmers are not artists, but rather use
some creativity that might not otherwise have been called
for. For programmers that would rather not consider this
issue, it may be ignored, or it may prove to be a hindrance
to using the method altogether. Others may view it as an
opportunity to explore and pioneer a new art form.

4) Psychological Issues

The utilization of 3D metaphor necessitates that the
programmer thinks in an object-oriented fashion. When the
program and its operation will ultimately be represented in
three dimensions with concrete and familiar objects, the
programmer has little choice but to consider this during the
programming process. Still, the programmer must make a
mental effort to keep this in mind, and there is some extra
work involved in invoking 3D metaphors. Additionally, a
programmer must now be concerned with problems
associated with visualization. Finally, since we are
extending the concept of object-oriented design, a very
slight paradigm shift is involved.

With the freedom to choose any type of metaphor,
including a combination of metaphors to represent a
program, we also introduce the possibility that there can be
“too much freedom.” In other words, great freedom could
result in poor structure, or vacillation over what is “the best
metaphor.” We rely on the programmer to be disciplined
enough to adhere to good design principles and be creative
at the same time.

80

Ultimately, the utility of 3D metaphor will need to be
judged from the results of empirical resecarch. Such
research might concern itsclf with both tangible and
psychological factors. These may include such things as
gains or losses in efficiency and correctness compared with
traditional methods, length of design and debug cycles,
programmer memory retention of program structures and
design after varying periods of time, and ease and
enjoyability of use. Historically, this kind of research has
been hindered by the use of tools characterized by poor
usability; poor usability interferes with the evaluation of
more important aspects of the research. Hopefully, better
tools arc on the horizon. Two examples of related
psychological studies are given in [3] and [33]. See [40] for
an interesting empirical psychological study of users
assessments of aesthetics and apparent usability in interface
design.

5) Our Research Philosophy

We have not performed human experiments to justify our
use of 3D, instead relying on the definition and deployment
of a complete methodology. This approach is consistent
with the usual dichotomies present that separate designer-
builders from those performing statistical validation
experiments. We recognize the importance of such
experiments; however, due to the relatively small size of
our research group, we lack the personnel resources
necessary to perform these experiments ourselves. To
mitigate this seeming deficiency in our method, we are in
close contact with several researchers working in HCI and
the psychology of user interfaces [40].

Currently, our mission is to express the rube™ paradigm
and justify it by demonstrating how it achieves specific
goals that are novel and unique, rather than immediately
justify it through HClI-type research. This is because our
research focus is more on modeling than on human-focused
experimental research. We do not diminish the importance
of such research (rather the opposite), but we do attempt to
maintain our modeling focus in the face of the potentially
significant distraction of HCI research. This perspective
ensures that we progress in the area of model design and
methodology. However, one of our goals is to monitor and
make use of past and future HCI research and thus achieve
a symbiosis.

IV. CONCLUSIONS

Through the creation of an example operating system
task scheduler program using VRML, we have explored the
utility and viability of the multimodeling and metaphor
aspects of the rube™ paradigm. This approach involved
modeling components of a simplified OS task scheduler as
a QNET, and incorporated FSMs inside the tasks. Further,
we used appropriate metaphors and their mappings to real-
world objects in the design and visualization of the system.
These metaphors included the mapping of a synthetic

human to an OS task, where the synthetic human may be
viewed as an agent of the OS task as the tasks
representative to the task scheduler. We showed that the
synthetic human agent metaphor may have application in
agent systems, and may prove useful for novice modelers in
particular. The issues, advantages, and disadvantages of the
approach were discussed. We found that the method was
both useful and viable for the example program and that the
general method was worthy of further research and
extension.

ACKNOWLEDGEMENTS

We would like to thank the following funding sources that
have contributed towards our study of modeling and
simulation: (1) Jet Propulsion Laboratory under contract
961427 An Assessment and Design Recommendation for
Object-Oriented Physical Modeling at JPL (John Peterson
and Bill McLaughlin); (2) Rome Laboratory, Griffiss Air
Force Base under contract F30602-98-C-0269 4 Web-Based
Model Repository for Reusing and Sharing Physical Object
Components (Al Sisti and Steve Farr); and (3) Department
of the Interior under grant 14-45-0009-1544-154 Modeling
Approaches & Empirical Studies Supporting ATLSS for the
Everglades (Don DeAngelis and Ronnie Best). We are
grateful for their continued financial support. We would
also like to thank Milagros Lemos of ReyesWorks for
allowing us to cite ReyesWork s agent development efforts
and for granting us permission to reprint the photo in Fig. 1.

REFERENCES

[1] M. Auguston, “The V experimental visual programming
language,” Tech. Rep. NMSU-CSTR-9611, New Mexico State
Univ., October 1996.

[2] A. F. Blackwell, Metaphor in Diagrams. Ph.D. dissertation,
Darwin College, Univ. of Cambridge, Cambridge, U.K., September
1998.

[3] A F. Blackwell and T. R. G. Green, “Does Metaphor Increase
Visual Language Usability?” in Proc. 1999 IEEE Symp. on Visual
Languages, pp. 246 — 253, 1999.

(4] R. Burkhart, “The Swarm Multi-Agent Simulation System,” in
(OOPSLA) '94 Workshop on *‘The Object Engine, " September 1994,

[5] S. K. Card, J. Mackinlay, and B. Shneiderman, Eds. Readings in
Information Visualization : Using Vision to Think. San Francisco,
CA: Morgan Kaufmann, 1999.

[6] R. Carey and G. Bell, The Annotated VRML 2.0 Reference
Manual. Reading, MA: Addison-Wesley, 1997.

[7] P.T. Cox and T. Pietryzkowsky, “Using a pictorial representation
to combine dataflow and object-orientation in a language-
independent programming mechanism,” in E. P. Glinert, Ed. Visual
Programming Environments: Paradigms and Systems. Los
Alamitos, CA: IEEE Computer Society Press, 1990.

[8] R. M. Cubert, T. Goktekin, and P. A. Fishwick, “MOOSE:
architecture of an object-oriented multimodeling simulation system,”
in Proc. Enabling Technology for Sim. Sci., 1997 SPIE AeroSense
Conf., pp. 78 — 88, April 1997.

[9] A. A. di Sessa, “Notes on the future of programming: breaking the
utility barrier,” in D.A. Norman and S.W. Draper, Eds. User
Centered System Design: New Perspectives on Human-Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum, 1986.

[10] W. Finzer and L. Gould, “Programming by Rehearsal,” in BYTE,
vol. 9, no. 6, pp. 187-210, June 1984.

[113 P. A. Fishwick, “SIMPACK: Getting Started with Simulation
Programming in C and C++,” in 1992 Winter Sim. Conf. Proc., pp.
154-162,1992. ’

[12] P. A. Fishwick, Simulation Model Design and Execution.
Englewood Cliffs, NJ: Prentice Hall, 1995.

[13] P. A. Fishwick, “Aesthetic Programming,” Leonardo, MIT Press,
submitted for review September 2000.

[14] P. A. Fishwick, N. H. Narayanan, J. Sticklen, and A. Bonarini,
*“A Multi-Model Approach to Reasoning and Simulation,” in JEEE
Trans. on Syst., Man and Cybern ., vol. 24, no. 10, pp. 1433 — 1449,
1992.

[15] P. A Fishwick, A. Ummacher, and B. Zeigler, Eds., “Agent
Oriented Approaches in Distributed Modeling and Simulation:
Chalienges and Methodologies,” in Dagstuhl Seminar Report, July
1999.

{16] P. A. Fishwick and B. P. Zeigler, “A Multimode] Methodology
for Qualitative Model Engineering,” in ACM Trans. on Modeling and
Comp. Sim ., vol. 2,no. 1, pp. 5281, 1992.

[17] S. Franklin and A. Graesser, “Is it an Agent, or just a Program?:
A Taxonomy for Autonomous Agents,” in Proc. of the Third Int.
Workshop on Agent Theories, Architectures, and Languages,
Springer-Verlag, 1996.

[18] J. Hopkins and P. A. Fishwick, “On the Use of 3D Metaphor in
Programming,” in Proc. of Enabling Technology for Sim. Sci., SPIE
AeroSense 2000 Conf, April 2000.

[19] W. Jansen and T. Karygiannis, “NIST Special Publication 800-
19 — Mobile Agent Security,” Gaithersburg, MD: National Institute
of Standards and Technology, August 1999.

[20] N. R. Jennings and M. J. Wooldridge, Eds., Agent Technology:
Foundations, Applications, and Markets. Berlin: Springer-Verlag,
1998.

[21] C. G. Jung, J. Lind, C. Gerber, M. Schillo, P. Funk, and A. Burt,
“An architecture for co-habited virtual worlds,” in Proc. of the 1999
Virtual Worlds and Sim. Conf., January 1999.

[22] K. Kahn, “Generalizing by Removing Detail,” in Comm. of the
ACM, vol. 43, no. 3, pp. 104 - 106, March 2000.

[23] H. Lieberman, “Visual Programming: A Vision for the Future,”
in Friend-21 Conf. on Human Interface Technologies, September
1989.

[24] H. Lieberman, “A Three-Dimensional Representation for
Program Execution,” in Proc. of the 1989 Workshop on Visual
Languages, October 1989.

[25] H. Lieberman, “Programming by Example,” in Comm. of the
ACM, vol. 43, no. 3, pp. 73 — 74, March 2000.

[26] A. B. Loyall and J. Bates, “Real-time Control of Animated Broad
Agents,” in Proc. of the Fifieenth Annual Conf. of the Cognitive Sci.
Society, June 1993.

[27] C. Marrin and B. Campbell, Teach Yourself VRML 2 in 21 Days.
Indianapolis, IN: Sams.net Publishing, 1997.

[28] M. Mateas, “An Oz-Centric Review of Interactive Drama and
Believable Agents,” Tech. Rep. CMU-CS-97-156, Camegie Mellon
Univ., June 1997

[29] B. Meyer, Object-Oriented Software Construction Second
Edition. Upper Saddle River, NJ: Prentice Hall, 1997.

[30] B. A. Myers, R. McDaniel, and D. Wolber, “Intelligence in
Demonstrational Interfaces,” in Comm. of the ACM, vol. 43, no. 3,
pp. 82 — 89, March 2000.

[31] M. Najork, Programming in Three Dimensions. Ph.D.
dissertation, Univ. of Illinois at Urbana-Champaign, 1994.

[32] T. Nelson, “The Right Way to Think about Software Design,” in
B. Laurel, Ed. The Art of Human-Computer Interface Design,
Addison-Wesley, 1990

[33] M. Petre and A. F. Blackwell, “Mental imagery in program
design and visual programming,” in Int. Journal of Human-Computer
Studies, vol. 51, no. 1, pp. 7— 30, 1999.

[34] A. Repenning and C. Perrone, “Programming by Analogous
Examples,” in Comm. of the ACM, vol. 43, no. 3, pp. 90— 97, March
2000.

[35] K. Schelderup and J. Olnes, “Mobile Agent Security — Issues and
Directions,” Lecture Notes in Comp. Sci., vol. 1597, pp. 155-167,
1999.

[36] D. C. Smith, PYGMALION: A Creative Programming
Environment. Ph.D. dissertation, Stanford Univ., 1975.

81

{37] D. C. Smith, A. Cypher, and L. Tesler, “Novice Programming
Comes of Age,” in Comm. of the ACM, vol. 43, no. 3, pp. 75 - 81,
March 2000.

[38] R. St. Amant, H. Lieberman, R. Potter, and L. Zettlemoyer,
“Visual Generalization in Programming by Example,” in Comm. of
the ACM, vol. 43, no. 3, pp. 107 - 114, March 2000.

[39] J. Stasko, J. Domingue, M. Brown, and B. A. Price, Eds.
Software Visualization: Programming as a Multimedia Experience.
MIT Press, 1998.

[40] N. Tractinsky, “Aesthetics and Apparent Usability: Empirically
Assessing Cultural and Methodological Issues.” in Proc. 1997 Conf.
on Human Factors and Computing Svs.(CHI 97), pp. 115-122,
March 1997.

[41] T. Veale, Metaphor, Memory and Meaning: Symbolic and
Connectionist Issues in Metaphor Interpretation. Ph.D. dissertation,
School of Computer Applications, Dublin City Univ., Dublin,
Ireland.

[42] P. Young, Visualising Software in Cvberspace. Ph.D.
dissertation, Dept. of Computer Science, Univ. of Durham, Durham
U.K., October 1999.

John F. Hopkins was born in Elizabeth,
NJ on November 20, 1969. He enlisted in
the US Navy in 1987 and performed the
duties of electronics technician and
nuclear reactor operator on board a Los
Angeles class submarine. He received the
Bachelor of Science degree in Psychology
from the University of Florida,
Gainesville, FL, in 1998. He is currently

iy pursuing the Master of Computer and
Information Science degree at the University of Florida and
expects to graduate in 2001.

Paul A. Fishwick is Professor of
Computer and Information Science and
Engineering at the University of Florida.
He received the PhD in Computer and
Information Science from the University
of Pennsylvania. He also has six years of
industrial/government production and
research experience working at Newport
ol kX News Shipbuilding and Dry Dock Co.
(doing CAD/CAM parts definition research) and at NASA
Langley Research Center (studying engineering data base models
for structural engineering). His research interests are in computer
simulation modeling and analysis methods for complex systems.
He is a senior member of the IEEE and a Fellow of the Society for
Computer Simulation. Dr. Fishwick founded the comp.simulation
Internet news group (Simulation Digest) in 1987, which now
serves over 20,000 subscribers. He has chaired workshops and
conferences in the area of computer simulation, and will serve as
General Chair of the 2000 Winter Simulation Conference. He was
chairman of the IEEE Computer Society technical committee on
simulation (TCSIM) for two years (1988-1990). Dr. Fishwick's
WWW home page is http://www.cise.ufl.edu/~fishwick and his
E-mail address is fishwick@cise.ufl.edu. He has published over
40 journal articles, written one textbook, co-edited two Springer
Verlag volumes in simulation, and published six book chapters.

Web-Based Simulation: Revolution or Evolution?

Ernest H. Page Arnold Buss Paul A. Fishwick
The MITRE Corporation Operations Research Department Department of Computer
1820 Dolley Madison Blvd. Naval Postgraduate School and Information Science Engineering
McLean, VA 22102 Monterey, CA University of Florida
Gainesville, FL 32611
Kevin Healy Richard E. Nance Ray J. Paul
ThreadTec, Inc. Systems Research Center and Centre for Applied Simulation Modeling
P.O. Box 7 Department of Computer Science Brune! University
Chesterfield, MO 63017 Virginia Tech Uxbridge, Middlesex, UB8 3PH, UK

Blacksburg, VA 24061

Abstract

The nature of the emerging field of web-based simulation is examined in terms of its relationship to
the fundamental aspects of simulation research and practice. The presentation, assuming a form of
debate, is based on a panel session held at the first International Conference on Web-Based Modeling
and Simulation which was sponsored by the Society for Computer Simulation during 11-14 January 1998
in San Diego, California. While no clear “winner” is evident in this debate, the issues raised here certainly
merit ongoing attention and contemplation.

Categories and Subject Descriptors: 1.6.5 [Simulation and Modeling]: Model Development —
modeling methodologies, 1.6.8 [Simulation and Modeling]: Types of Simulation — distributed

Additional Key Words and Phrases: Digital objects, distributed modeling, Java

1 Preface

The emergence of the world-wide web (WWW) has produced an environment within which many disciplines
are being re-evaluated in terms of their inherent approaches, techniques and philosophies. The disciplines
concerned with computer simulation are no exception to this phenomenon; the concept of “web-based sim-
ulation” has been introduced and is currently the subject of much interest to both simulation researchers
‘and simulation practitioners. As an area of scholarly endeavor, web-based simulation debuted as a 3-paper
session at the 1996 Winter Simulation Conference (WSC) and was, by far, the most well-attended session
within the modeling methodology track of that conference. This success was repeated at WSC 97, and in
January 1998 the first conference dedicated to the topic of web-based simulation was held as part of the
annual Society of Computer Simulation (SCS) Western Multiconference [9].

This paper stems from a panel convened for WEBSIM ’98. The charter for the panel was to examine the
fundamental nature of web-based simulation and explore its relationship to the body of theory and practice in
simulation modeling methodology that has evolved over the past forty years [14]. One goal for the panel was
to distill the essential and differentiating aspects of web-based simulation, if any, from amongst the mountains
hype that tend to surround the WWW. The central question was this: does web-based simulation represent
a revolutionary change or an evolutionary change? We posed the question because the nature of change
would seem to bear some relationship to the proper directions and focus of web-based simulation research
and practice. :

The panel composition was structured in an effort not only to portray all sides of the issues being
addressed but also, hopefully, to engender controversy and stimulate the participation of the audience.
Arnold Buss, Paul Fishwick and Kevin Healy are active in web-based simulation research and development.
Dick Nance and Ray Paul represent the “traditional” simulation modeling methodology community. Kevin

83

Healy presents a view from the commercial world. the rest of the panel hails from academe. Arnold, Dick,
Paul and Kevin provide a U.S. perspective. Ray serves as international representative.

The remainder of the paper is organized as follows. Section 2 establishes the framework for debate.
The panelists responses are captured in Section 3. We attempt to portray the essence of the dialogue that
occurred during the session through focus on a few key points of dispute in Section 4. Section 5 contains a
concluding summary.

2 What are the Modeling Methodological Impacts of Web-Based
Simulation?

Simulation modeling methodology deals with the creation and manipulation of models over the lifetime
of their use.- Motivated by the recognition that the manner in which a simulation model is conceived,
developed and used can have a significant impact on the ability of the model to achieve its objectives,
modeling methodology has been an active research area since the inception of digital computer simulation.

Over the past forty years the practice of simulation model creation has evolved from coding in general-
purpose languages, to model development in special-purpose simulation languages, to model design using
higher-level simulation model specification languages and formalisms, to comprehensive theories of simulation
modeling and holistic environment support for the modeling task. Thematic in much of the modeling
methodological work to date has been the recognition of Dijkstra’s principle of the “separation of concerns”
which argues for the separateness of specification and implementation [4]. In many cases, this philosophy has
been tempered by the pragmatic observations of Swartout and Balzer [17], who observe that separation is a
worthy goal but not achievable in totality since any specification, S, may be viewed as an implementation
of some higher-order specification, §'.

Another argument in favor of the intertwining of specification and implementation is that technological
advancements may enable new approaches to accomplishing a task—approaches that were not even con-
ceivable prior to the advent of the technology. Consider, for example, the advent of the assembly line in
manufacturing. The potential of the WWW as such a technology push is cited in an article that describes
the application of the WWW within the manufacturing process [5], “Our initial experiments at putting en-
gineering, design and manufacturing services on the Web are so successful that we believe we should rethink
the traditional approaches and tools for coordinating large, distributed teams.” With respect to simulation,
a similar revolution seems plausible. Web technology has the potential to significantly alter the ways in
which simulation models are developed (collaboratively, by composition), documented (dynamically, using
multimedia), analyzed (through open, widespread investigation) and executed (using massive distribution).

Is the web, in fact, such an elixir, demanding that we radically alter our modeling philosophies and
approaches? Or is web-based execution merely another implementation detail that can, and should, be
abstracted from the model development process?

3 Responses

The following sections contain responses from the panel members regarding the central question.

3.1 Web-Based Simulation Modeling
(Arnold Buss)

The explosion of computer networks have created an environment for computer modeling in general, and
simulation modeling in particular, that is revolutionary. In order to properly exploit these developments the
nature of modeling must change.

Simulation models have been traditionally monolithic in design. The advent of Object-Oriented Pro-
gramming has resulted in more elegantly designed monoliths. Simulation models for both industrial and
military applications have been mostly designed for models running on a single machine. For such mod-
els the network offers little. Using the full power of the network offers potentially substantial benefits to
modeling and simulation, but only if models are designed differently.

84

modeling and decision-making cycle by an order of magnitude. The integration of computer models running
with systems has great potential for military analysis and training.
In nutshell, web-based simulation models must accommodate:

e applications that expect to receive data across the network from a database that will be dynamically
determined,

¢ applications that will expect to receive new classes and data unforeseen at the time the model was
started, and

¢ applications using components that are loosely bound, rather than tightly coupled.

The Java programming language, together with the related cluster of Java Technologies, have substan-
tially extended the capabilities of program-level tasks. Java classes can open sockets across a network,
perform database queries, and encrypt data streams for secure transmission. New classes may be dynami-
cally incorporated as the program is running, thus enabling dynamic extensibility. Objects on one computer
may be serialized and sent to another, where thay are immediately incorporated into that computer’s model.
Objects on another computer may be invoked through Remote Method Invocation.

The capabilities of programming languages have outstripped our knowledge of how best to write programs
exploiting these capabilities. Software design principles for procedural and even object-oriented programs
are well-known. It is not yet known how software should be designed using these tools. It is also not clear
how best to exploit the tremendous possibilities offered by the network.

3.2 Distributed Modeling Using the Web as an Infrastructure
(Paul A. Fishwick)

One of the most critical problems in the field of computer simulation today is the lack of published models
and physical objects within a medium—such as the World Wide Web—allowing such distribution. The web
represents the future of information sharing and exchange, and yet it is used primarily for the publication
of documents since the web adopts a “document/desktop metaphor” for knowledge. In the near future, we
envision an “object metaphor” where a document is one type of object. A web predicated on digital objects
is much more flexible and requires a knowledge in how to model physical phenomena at many different scales
in space-time.

If a scientist or engineer (i.e., model author) works on a model, places the model inside objects, and
constructs a working simulation, this work occurs most often within a vacuum. Consider a scenario involving
an internal combustion engine in an automobile, where the engine is the physical object to be simulated.
‘The model author’s task is to simulate the engine given that a new engineering method, involving a change
in fuel injection for example, is to be tested. By testing the digital engine and fuel injection system using
simulation, the author can determine the potential shortfalls and benefits of the new technique. This task
is @ worthwhile one for simulation, and simulation as a field has demonstrated its utility for objects such as
engines.

Let’s analyze the problems inherent in this example. There is no particular location that will help the
author to create the geometry of the engine and its dynamics. Moreover, if the model author seeks reusable
components on the web, who is to ensure the quality or accuracy of these components? It may be that
other employees of the company have made similar engine models in the past, and that these models may
be partially reused. If this is the case, the model author is fortunate, but even if such a company-internal
model exists, it may not be represented in “model form.” There may be other model authors who have
already constructed pieces that our model author could use, but there if there is no reuse and no standard
mechanism for publishing the model or engine object, then this is all for naught. The model author may also
be concerned with creating a fast simulation. While algorithms for speeding simulations are important, by
solving the reusability problem, we also partially solve the speed problem since published quality models of
engines will battle in the marketplace for digital parts, and the best engine models and testing environments—
involving very fast and efficient simulation algorithms—will win out in the end. Therefore, the problem of
reuse of engine objects and components lies at the heart of the simulationist’s dilemma. Fast, efficient

(Use of up-to-date data by dynamically interacting with databases across the network speeds up the

85

and quality models could be available at some point in the future, but today there is no infrastructure or
agreed-upon standards. for true digital object engineering.

What if the model author of the engine creates a digital engine that operates differently than the actual
one? The automobile company could provide full access to an invalid model. We must have quality control
measures in place to help us with this situation. The physical metaphor provides some help. Many consumer
groups and institutions exist to protect consumers from bad products. Digital products will require similar
groups and testing procedures. If a company knowingly markets a bad digital product, they will ultimately
pay for this error in the marketplace. The digital object must be treated with the same level of quality control
as the physical counterpart. In some cases, a company might make a mistake in production and a part or
entire vehicle must be recalled. This type of recall is made easier with the digital product. It behooves the
model authors to create valid, quality objects. It may be that anyone can publish a digital object but this
is true of physical objects as well. The situation is somewhat more acute with a digital automobile since to
create an automobile in the first place, one must have invested a fair amount of time and resources; however,
a digital engine could be created by the neighbor down the street. One must learn to trust certain sources
more than others based on past performance of prior digital objects. Also, we must have ways of verifying
our sources, developers and producers with methods such as digital signatures, watermarks and encryption.

3.3 Simulation Modeling Methodology and the WWW
(Kevin J. Healy)

The World Wide Web was conceived as a set of simple Internet-based client /server protocols for transferring
and rendering documents of a primarily textual nature. What distinguished the Web’s mode of communicat-
ing information from other Internet-based tools that preceded it (e.g. electronic mail, electronic file transfer
via ftp, and network newsgroups) was the provision for embedding hyperlinks that allowed users to easily
navigate between related documents. The hyperlinking scheme allowed content providers to organize and
present information in a natural hierarchical fashion. It also served to insulate users from the tedious details
involved in identifying and retrieving a particular document. Since the development and rapid widespread
adoption of these conventions, they have been extended and integrated with other new related technologies
that provide for the delivery of content that is much more dynamic in nature. The most important of these
related developments has been the introduction and rapid widespread adoption of the Java programming
language as a standard for Internet-based computation.

The integration of the Web and Java represents a technological advancement that enables a fundamen-
tally new approach to simulation modeling, one that makes possible the development of environments with
coherent Web-based support for collaborative model development, dynamic multimedia-based documenta-
tion, as well as open widespread execution and investigative analysis of models. A key aspect to the approach
is the role the Java language plays in both the specification and implementation of the model.

The evolution to high-level model specification languages and formalisms has been motivated by the
desire to make simulation more accessible by eliminating the programming burden. However, such systems
are often difficult to modify or extend because of an imposed separation between the specification system
and its implementation. This can lead to models that poorly mirror system behavior and have no potential
for distribution and reuse within an enterprise. The Java language is ideally suited to implementing an
advanced simulation architecture whose features are readily accessible at the programming language level,
special purpose simulation language level, and high-level model specifications.

Specifically, key features like the well-designed object-oriented nature of Java and native support for mul-
tithreaded execution allow special purpose simulation modeling features to be incorporated directly into the
Java language in a natural way so that the underlying modeling and programming languages are the same.
These relatively low-level but powerful modeling capabilities can in-turn be used to implement higher-level
model specification systems via the JavaBeans component development model. The simple programming
conventions that constitute JavaBeans allow Java-based software components to be assembled visually into
applications using any of a growing number of sophisticated graphical programming environments including
Symantec’s Visual Café, Microsoft’s J++, IBM’s Visual Age, Sun’s Java Workshop, Borland’s Jbuilder, and
Lotus’s BeanMachine. When visually assembling predefined simulation modeling components, no program-
ming is required; however, when necessary, the user has access to the underlying code and full power and

86

flexibility of the Java programming language. What’s more, any Java environment can be used for model
building and debugging. The modeling language capabilities and predefined component assembly capabilities
can also be used in isolation or in combination to produce high-level standalone simulation applications that
users interact with in predefined ways.

The hardware and operating system independent design of Java facilitates collaboration by allowing
modelers to share language level or component level models independent of where they were developed. The
documentation and deployment of modeling tools and end-user applications via the Web also serves to make
open and widespread both the development and investigative analysis of models.

This vision of Web-based simulation is the motivation behind Thread Technologies’ design of Silk™,
a general purpose simulation language based on the Java programming language. Silk merges familiar
process-oriented modeling structures with powerful object-oriented language features in an intelligent de-
sign that encourages model simplicity and reusability through the development and the visual assembly
of Silk modeling components in JavaBeans-based graphical software environments. More generally, Silk’s
openly extensible, scalable, and platform independent design represents the type of approach that is essen-
tial to keeping simulation modeling on track with other revolutionary changes taking place in Internet-based
computing.

3.4 Simulation Modeling Methodology in the Wonderfully Webbed World
(Richard E. Nance)

While modeling methodology has been with us since the inception of simulation, it remained indistinguish-
able from programming throughout the first two decades. Nevertheless, a few early researchers abstracted
beyond the executable form to search for more significant semantic revelations. Lackner and Kribs [11] and
Kiviat [10] are prominent examples, but Tocher’s [18] wheel charts to assist in model specification and the
IFIP proceedings on simulation programming languages [2] show that interest was widespread. Efforts to
derive a theory of simulation [19] generated interest in model representation in the 1970s. The latter part of
the decade ushered in the first specific focus on modeling methodology (model life cycle, model specification
languages, the DELTA project) {12]. With the 1980s came the vision of model development environments [13]
that are now a commercial reality. Is the subject of this panel session presaging the next major transition
in simulation model development?

3.4.1 Modeling Methodology

Since “methodology” is both over-used and misused, a definitional explanation in this context is appropriate.
Methodology, following the view of Arthur et al. {1, p. 4], should:

e organize and structure the tasks comprising the effort to achieve global objectives,

e include methods and techniques for accomplishing individual tasks (within the framework of global
objectives), and

e prescribe an in which certain classes of decisions are made and the ways of making those decisions
leading to desired objectives. '

Key in the attainment of the objectives are the principles that form the foundational support of a method-
ology.

3.4.2 Influence of the Web

If the world wide web is to effect major changes in modeling methodology, then it must alter or abolish
existing principles or introduce new principles. At this juncture the capability of the web to influence the
technology of model building, mode! execution and model sharing is clear, and the degree of change appears
significant. However, that the potential for influence extends into the principles - the foundational core — is
less apparent.

87

3.5 Web-Based Simulation: Whither We Wander?
(Ray J. Paul)

This panel contribution will discuss a variety of new technologies for software development and ways of
working that will have an unpredictable effect on the future of simulation modelling.

3.5.1 Multi-media/Synthetic Environments

The ability to access multi-media on the web clearly introduces greater potential for the use of videos of
problem scenarios, for interaction with stake-holders situated at remote locations (for example, when the
running model hits an unknown combination of circumstances, an expert stake-holder might be able to
determine the successful rules for advance) and sound. For example, on a recent visit made to a Hong
Kong container terminal, I was shown a television control centre, computer-based, which had 100% video
coverage of the terminal. Whilst its purpose was clearly for security and safety, it requires little imagination
to visualise how a simulation of the terminal operation could call up the appropriate video camera when
problem discussants get to the point of a simulation run where clarification is desired. I think that the
rush to join the much-hyped band-wagon of Synthetic Environments, driven by technical extravagance and
financial greed, is in great danger of neglecting or even forgetting those major simulation issues of ongoing
concern over the years. These are the so far intractable problems of verification and validation. The current
enthusiasm for Synthetic Environments is therefore in danger of creating more expensive mistakes to the
detriment of the reputation of simulationists, analysts and operations researchers in general.

3.5.2 Natural Born Webbers

A large proportion of the current generation of students entering higher education in the developed countries
are already familiar with the pastime of browsing the Web and playing computer games. Both of these
activities might loosely be depicted as approaches based on “suck it and see”. Browsing and adventure
games encourage the participant to try out alternatives with rapid feed-back, avoiding the need to analyse
a problem with a view to deriving the result.

Such web users, in order to use simulation, need and desire development tools that allow for fast model
building and quick and easy experimentation. Furthermore, such web users should have a natural affinity to
the use of simulation models as a problem understanding approach {15, 16]. Web-enabled simulation analysts
will be opposed to classical software engineering approaches and methodologies. They will be seeking tools
that will enable them to assemble rather than build a model. Some feel for the change of “culture” that we
can expect from future generations of computer users can be gauged from a recent experience of mine on
a visit to Taipei (Taiwan). A class of school children were using the local university’s multi-media lab. A
ten year old schoolboy was typing in HTML codes faster than I can and dynamically checking it by running
‘a rather impressive text/video/sound demonstration system. The boy could not speak, read or write any
English, everything was symbolic to him.

3.5.3 New Software Technologies

Some have predicted that the software industry will be divided into component factories where powerful and
general components will be built and tested, and into component assembly shops where these components
will be assembled into flexible business solutions. Such component based development, if it occurs, might
give significant gains in productivity and quality as well as known obvious benefits to web-based software
development.

3.5.4 Java

Java is now so ubiquitous that it might appear unnecessary to comment on it. For completeness the reader
is reminded that simulation models in Java can be made widely available; an applet can be retrieved and
run and does not have to be ported to a different platform or even recompiled or relinked; there is a high
degree of dynamism because Java applets run on a browser; Java built-in threads make it easier to implement

88

simulation following the process interactive paradigms; Java has built in supports for providing sophisticated
animations and Java is smaller, cleaner, safer and easier to learn than C++, allegedly.

3.5.5 Conclusions

For me, the aforegoing indicates a world of dynamic change, which I welcome, but where it is all going is a
matter of conjecture that will be colored more by prejudice and opinion than evidence.

4 Reactions

In this section the authors respond to the points made in the previous section.

4.1 Ray Paul’s Comments

Regarding the positions of Arnold Buss and Kevin Healy, it is arguable that Java is so good. We have
experience of platform dependence, and of course the rate of enhanced releases which are not downward
compatible outdates software rapidly. On the other hand, such fast adaptation of the language might
encourage improved methods of release compatibility, to the benefit of the industry at large.

Regarding Paul Fishwick’s position, it is arguable that quality control is necessary for software re-use.
The traditional methods of building large models, which takes much time and money, and which in itself
then leads to an expectation of repeated use, demand some sort of quality assurance. When it takes so long
to get an answer(s), it is a bit limp to also admit that the model may be indeterminately wrong! However,
if we can “glue” bits together fast and experimentally (Ray’s crystal ball in action here), then maybe the
emphasis will shift dramatically from “is the model correct?” to “is the analysis, albeit with unproven
software, acceptable given the large experimentation that swift modelling has enabled us to carry out in a
short space of time?” In other words, the search space has been dramatically reduced not by accuracy (the
old way), but by massive and rapid search conducted by an empowered analyst (the new way).

Regarding Richard Nance’s position, maybe our current principles are inappropriate for a web-based
world. I have already argued some of this in the previous paragraph. Here I go further. We are in a period
of rapid technical change (though some authors claim this will come to an end and life will settle down
again — see [6]). Every attempt we make to use these technological advances adds to the opening up of new
opportunities to make change. This is particularly noticeable in business, where new companies are emerging
fast, old ones sinking daily, mergers, acquisitions, takeovers, etc. are prevalent. Even in the military sphere,
the nature of the task to be faced changes quickly (war, peace-keeping, policing, training allies, reassessing
threat as the political world moves on and so forth). Analysis needs to be fast, else the problem has moved
on anyway. Methods that produce ballpark estimates quickly, enhanced with more accurate methods if
time allows, are or will be the order of the day. Principles based on output analysis, rather than modelling
analysis, are likely to be more appropriate. If the traditional analytical and academic communities try to
maintain current principles, they will become historians, worthy of a footnote about Luddite Neanderthals
in the next Millennium history.

4.2 Arnold Buss’s Comments

Regarding Ray Paul’s comments, he has indeed brought up some thought-provoking issues. With regard
to Java, although it is good to be skeptical, it is clear at this point that the only thing that will derail its
achieving true platform independence is willful destruction, to wit, Microsoft’s attempts to make it Windows-
specific. There is, in my opinion, simply too large a critical mass of developers and companies who are getting
on board for this to happen.

Moreover, I believe that the Java component infrastructure (JavaBeans) will be precisely the platform
on which to assemble large models from smaller components, so that the entire monolith does not have to be
designed in one piece. I believe that component-based design will supplant OO design in a major way in the
near future, in part fueled by network-based computing. On the network, you must be component-oriented
or the thing is just too unwieldy. Designing distributed models in a reasonable manner pretty much forces

89

you into components. The design issues focus more on responsibilities and interoperability rather than class
hierarchies, as in traditional OO design.

There is a somewhat subtle aspect of the Java language that turns out to be the real winner for component-
based design, namely interfaces (vice classes). Interfaces enable components to interoperate and pass mes-
sages without having to know the precise class or class hierarchy of each other. The interface is simply a
contract to implement certain methods, so they may be invoked with compiler-safe impunity. Interfaces
allow you to replace one object with another of an entirely different class with no necessary implied “is-a”
relationship.

The second really important element is enabled by interfaces: communication via events. Interfaces allow
you to define a small handful of event sources and event listeners that can provide communications between
objects that is much more flexible than ordinary method invocation. QOne object will register its interest in
another’s events (or, more likely, be registered by a third party). Whenever the event source’s state changes
to trigger an event, all objects listening are notified. The key is that neither event sources nor listeners
need to be “aware” that any of this is happening. Objects can register and un-register their interest as the
program evolves. Event communication is a powerful means of implementing distributed models. Remote
objects may easily register as listeners by using a remote mechanism (RMI, CORBA, etc.) and the event
sources need not know (or care).

I have enhanced Simkit to incorporate this kind of messaging. and am currently working with a student to
extend it further. For example, we have generic entities that are nothing more than containers. Functionality
1s put on these entities by creating and adding components. To enable movement, for example, a Mover
entity is thrown in. The kind of movement possible is entirely determined by the type of Mover. Add a
sensor and you can detect other things (depending. of course, on the kind of sensor). If a Mover and a
Sensor are put together in a container, then the movement is governed by the Mover. Basically, this is an
extremely flexible type of composition. It is difficult to express in standard OO notation, since neither the
Mover nor the Sensor are instance variables. Besides. Booch/UML diagrams just tend to confuse matters
in my opinion. The point is that a generic component-based methodology needs to be developed for such
modeling. Java is a perfect vehicle for doing just that.

4.3 Richard Nance’s Comments

Regarding Ray Paul’s comments, I do not accept the claim that “it is a bit limp to also admit that the
model may be indeterminately wrong.” A model is not reality and only a fool insists that a model be error-
free (the same person who wants a world with no accidents). How do you propose to answer the shifted
question above: “Is the analysis ... acceptable?” I see your only recourse as an after-the-fact conclusion,
which advances us to the stage of relying on prophets—why bother with the unproven software, etc? Having
returned us to the technology of 2000 years ago, what next is to be offered? How about a roulette wheel
with labeled outcomes?

Since the good Dr. Paul does not provide quotation marks or a page number, I assume that these
sentiments are not those of Fernandez-Armesto but his own. My reaction is that I do not live in the fast
lane that engulfs Dr. Paul. My long-time technical sponsor, the US Navy, is working now and for some
three years prior on the design of the next destroyer (2003). The models and simulations used in this task
are time-consuming to develop and the analysis is conducted over years, not days, hours or seconds. The
hull will be in service for some 30 years and undergo three major overhauls all of which will require parts
of the existing models and still others that will be developed, again perhaps in months, but certainly not in
seconds.

I do not think our modeling methodology principles have been altered at all by the web. The capabilities
of the tools based on the principles have changed and are changing, but that is the way technical progress
is made.

My thanks to the good Dr. Paul for his agitating expressions of these misguided views. May he never fly
on an aircraft developed with his analysis/prophet approach to decision making.

90

4.4 Paul Fishwick’s Comments

Everyone on the panel makes valid points. There is a need to tie together some of the views to make a
whole. At the same time, I'll express my own perspective on “where it all is going.” Ernie Page’s reference
of Dijkstra’s principle is one where we must separate specification from implementation. In general, this
separation is one where we talk of “level of model.” A piece of code, a mathematical expression, a Petri
network, and a 3D cylinder are all examples of models. We may choose one specific model to represent some
aspect of the system that we are studying. The code may represent the same dynamics as the Petri net,
while the cylinder may represent either an abstraction of the system shape or, perhaps, a state of the system.
The interpretation that we foster is the essence of modeling. Modeling is an art in this respect.

Arnie Buss and Kevin Healy speak kindly of Java. Java does show promise for its intended function: a
computer language meant to migrate over a large area network to promote distributed computing. At the
same time, Java is a textual computer language so its primary purpose is to represent dynamics at a fairly
low level of abstraction. I'll submit that source code written in Java is a model, and that one can “think in
Java” about system behavior. On the other hand, many people will not find this metaphor as appealing as
one that is visual and graphical. Models must serve the user’s view and way of thinking. There is no one
correct modeling language. Ultimately, models are shared metaphors. If I am part of the Petri network or
System Dynamics community, I think in these specific icons. The models color my thinking about dynamics.
If we can all agree that we have many modeling types or languages, and that we can form translations
among models (from Petri networks to Java, for example), then all forms of modeling become germane to
the discussion. With Java at the lowest level of translation, our task of distributed execution of models is
enhanced, and so research and development of Java is good for web-based modeling and simulation. Let’s
just keep in mind that Java is one of many nodes in a vast modeling network with models as nodes and
translations as arcs. I know very few scientists or engineers who would prefer Java over their pet modeling
methodologies.

Dick Nance and Ray Paul speak of two opposite poles in terms of quality in modeling. If I attend
an art exhibition and buy a modern sculpture made of electronic home appliances—such as toasters, can
openers, and mixers—I will most likely not use this artwork for engineering purposes. When special effects
companies in Hollywood create models of the Titanic and of New York City, their objective is to foster
entertainment and not to create statistically valid behavior. Therefore, both views are supported. Quality
must be maintained where it is required, and to the degree that it is required depending on overall objectives
of the simulation. There is nothing wrong with the Taiwanese schoolboy (Paul’s example) who grabs objects
left and right to create a new experience. Some of these objects, like the toaster in the sculpture, may be
based on high resolution models (both structural and dynamic). It is the way in which the objects are used
that determines the outcome, and all outcomes are fair game.

Luckily, the future is bright for simulation and web-based modeling and simulation. Imagine the Tai-

-wanese schoolboy unchained from abstract languages such as HTML. Instead, a new world-wide marketplace

of digital objects yields the digital equivalent of everything you see around you. The web is no longer fettered
with documents. Documents are but one kind of physical object. The schoolboy will be creating complex
games and simulations for his friends who will later join him in a multiplayer extravaganza. Meanwhile,
the Navy is testing out a new class of submarine using objects delivered by its contractors. This delivery
occurs well before the physical submarine components are manufactured. Some of the Navy objects will
be the same used by the schoolboy just as the toaster can be used in more than one way. The objectives
of the Navy and schoolboy are different, but the digital object marketplace is common to both of them. I
think that Dick Nance is right about a change in modeling methodology. It is happening now and web-based
simulation is the catalyst. The purpose of physical objects is to achieve a singular objective, but the global
objective is left open to the end-user. This is a departure from Arthur et al. [1] We should not limit our
models by global objectives. Objectives and models are orthogonal. I use the web to locate objects, and I
use these objects to create models of every variety. Like the manufacturer of the toaster, I create the best
digital toaster possible and let the consumer make the choice as to its utility. I would not be at all surprised
to go to Taiwan in ten years and find the schoolboy playing a “multi-player deathmatch” inside the confines
of a greatly enlarged toaster within a Dali-esque landscape. Meanwhile, the Navy is modeling the high-level
dynamics of a towed-array sonar using a circuit of light bulbs from General Electric’s web site, with bulbs
representing states.

91

5 Summary

The era of web is certainly upon us. There seems to be no escaping that fact. The confluence of the web and
simulation offers an opportunity to change the way we approach modeling. How much should we embrace
such change? The panelists disagree on this point. If the world of digital objects appears—and if publishing
models on the web becomes profitable, digital objects will proliferate—will the modeling process become
enhanced or impaired? Certainly the act of model construction would be simpler—assuming sufficiently
powerful search engines. It should be much easier to “plug” models together than to build models from
scratch. But then what? How will models be validated in this environment? Unless the open source
movement achieves ubiquity, model validation may be one big exercise in black-box testing. In areas where
validation is critical, this situation can only represent a step backwards.

But perhaps an engineering analogy is useful here. No one would argue, for example, that bridges are a
bad idea. Although occasionally failures do occur (and such failures can be catastrophic) for the most part
bridges are engineered for safety. Where possible, pathological situations are considered and accounted for
in bridge design. Worst-case capacities (and then some) are accommodated. The opportunity to misapply
the science and mathematics that support bridge design exists, but the engineering profession actively seeks
to limit such opportunities.

Technology marches on. Modeling is central to technological advancement. But advancing technology
impacts the modeling process as well. As simulation becomes a desktop commodity, it will be available to
masses. This ubiquity is a mixed blessing. Having access to such a powerful problem-solving technique is
potentially quite valuable. On the other hand, to the untrained user—a user with a what-you-see-is-what-
you-get perspective—the potential to misapply the technique is great. As responsible engineers of the future,
should those enabling the web-based simulation revolution also shepherd the safety of the technique?

References

(1] Arthur, J.D., R.E. Nance and S.M. Henry. 1986. “A Procedural Approach to Evaluating Software
Development Methodologies and Associated Products.” SRC-87-007, Systems Research Center, Virginia
Tech, Blacksburg, VA.

(2] Buxton, J.(ed). 1968. Proceedings of the IFIP Working Conference on Simulation Programming Lan-
guages, North-Holland.

(3] Cubert, R. and Fishwick, P.A. 1997. “MOOSE: An Object-Oriented Multimodeling and Simulation
Application Framework” accepted for Simulation, July 1997. Further information on MOOSE can be
found in http://wuw.cise.ufl.edu/ ~fishwick/moose.html

(4] Dijkstra, E.-W. 1976. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ.

(5] Erkes, J.W.; Kenny, K.B.; Lewis, J.W.; Sarachan, B.D.; Sobolewski, M.W; and R.N. Sum, Jr. 1996.
“Implementing Shared Manufacturing Services on the World-Wide Web.” Communications of the ACM,
39, no. 2 {Feb.):34-45.

[6] Fernandez-Armesto, F. 1995. Millennium: A History of the Last Thousand Years. Touchstone, Inc. New
York, NY.

(7] Fishwick, P.A. 1995. Simulation Model Design and Ezecution, Prentice-Hall, Englewood Cliffs, NJ..

(8] Fishwick, P.A. 1996. “Web-Based Simulation: Some Personal Observations” In: Proceedings of the 1996
Winter Simulation Conference, (San Diego, CA, Dec. 8-11). Association for Computing Machinery, New
York, 772-779.

[9] Fishwick, P.A., Hill, D.R.C. and Smith, R., Eds. Proceedings of the 1998 International Conference on
Web-Based Modeling and Simulation, SCS Simulation Series 30(1), San Diego, CA, 10-14 January 1998.

(10] Kiviat, P.J. 1967. “Digital Computer Simulation: Modeling Concepts.” RAND Memo RM-5883-PR,
Santa Monica, CA.

92

(11] Lackner, M.R. and P. Kribs. 1964. “Introduction to a Calculus of Change.” System Development Corp.,
TM-1750/000/01.

[12] Nance, R.E. 1979. “Model Representation in Discrete Event Simulation: Prospects for Developing
Documentation Standards.” In Current Issues in Computer Simulation, N. Adam and A. Dogramaci
(eds), Academic Press, 83-97.

(13] Nance, R.E. 1983. “A Tutorial View of Simulation Model Development.” In: Proceedings of the 1983
Winter Simulation Conference, (Arlington,VA, Dec 12:14). IEEE, Piscataway, NJ, 325-331.

(14] Page, EH., Buss, A., Fishwick, P.A., Healy, K.J., Nance, R.E. and Paul, R.J. 1998. “The Modeling
Methodological Impacts of Web-Based Simulation,” In: Proceedings of the 1998 SCS International
Conference on Web-Based Modeling and Simulation, pp. 123-128, San Diego, CA, 11-14 January.

(15] Paul R.J and D.W. Balmer 1993. Simulation Modelling. Lund, Sweden: Chartwell-Bratt Student-Text
Series.

[16] Paul R.J. and V. Hlupic 1994. “The CASM Environment Revisited.” In: Proceedings of the 199/ Win-
ter Simulation Conference, (J.D. Tew, S. Manivannan, D.A. Sadowski and A.F. Seila, Eds.) (11-14
December 1994, Orlando). Association for Computing Machinery, New York, 641-648.

[17] Swartout W.; and R. Balzer. 1982. “On the Inevitable Intertwining of Specification and Implementa-
tion.” Communications of the ACM, 25, no. 7(July):438-440.

(18] Tocher, K.D.T. 1966. “Some Techniques of Model Building.” In: Proceedings, IBM Scientific Symposium
on Simulation Models and Gaming, pp. 119-155, White Plains, NY.

[19] Zeigler, B.P. 1976. Theory of Modelling and Simulation, Wiley, New York.

93

A Modeling Strategy for the NASA Intelligent Synthesis Environment

Paul A. Fishwick

Department of Computer & Information Science & Engineering
University of Florida
Gainesville, Florida 32611, U.S.A.

July 13, 1999

Abstract

We overview the goals of NASAs Intelligent Synthesis Environment (ISE) from
the perspective of system modeling. Some of the problems with present day modeling
are discussed, followed by a suggested course of action where models as well as their
objects are specified in a uniform representation based on the Virtual Reality Modeling
Language (VRML). Existing dynamic modeling techniques tend to be 2D in form.
The Rube methodology and application provides a 3D modeling framework where
model components are objects, and all objects are defined in such a way that they
can be easily defined within web documents. This approach suggests the formation
of reusable digital objects that contain models. Keywords: Modeling, Metaphor,
Abstraction, Simulation

1 Modeling the Future

‘NASA is reinventing itself with respect to new challenges that will culminate in more fre-
quent, less expensive missions. A recent paper by Goldin, Venneri and Noor [10] covers some
of the sweeping changes that are to engulf NASA and project it well into the next century.
The Intelligent Synthesis Environment (ISE) represents a key piece of the new NASA. How
can we begin with a conceptual design for a new spacecraft and take this design through the
stages of analysis, testing and fabrication while maintaining the highest level of quality? We
enable ourselves to step through sections of the gauntlet with ease if we can generate effective
modeling methods. Modeling represents a significant part of ISE since it is with modeling
that synthesis of spacecraft is made manifest. ISE is divided into five elements. While the
general role of modeling is pervasive in all areas, it is strongest in the ISE elements Rapid
Synthests and Simulation Tools and Collaborative Engineering Environment. It is certainly

94

cheaper to build a virtual spacecraft for Cassini or the Deep Space missions than to con-
struct the actual hardware. And yet, modeling is not without its problems. Modeling can be
extraordinarily complex—both in representational schemes and in the iterative procedures
required to evolve models over time. My goal is to focus on the modeling aspect of ISE to
recommend specific changes in how we design dynamic models that blend seamlessly with
the 3D objects being modeled. Models do not have material components. They are ethereal
and live inside the computer. It is through the efficient practice of modeling that NASA will
jumpstart itself into a more efficient future.

- NASA Centers are embracing the goals of ISE. Kennedy Space Center [4] has the vir-
tual Shuttle operations model to support ground processing. JPL is improving the approach
to engineering spacecraft from design to fabrication. The Develop New Products (DNP)
initiative has generated significant research in methods for improving engineering design and
the processes associated with design. Smith [20] and Wall et al. [22, 21} define approaches
to modifying the existing NASA engineering design practices through model-based means.
They point out that much of what exists today in NASA reflects a “document-based” ap-
proach to design. A model-based approach is a significant step toward a more manageable
process. A related problem is where code is used instead of models. The recognition that
we need to surface models will naturally lead to more effective and cost-efficient simulations,
where the code is automatically compiled, translated from the model’s structure. The DNP
design cycle is typically divided into the following processes: Mission and System Design
(MSD), Design, Build and Test (DBAT), Validate, Integrate, Verify and Operate (VIVO)
and Project Leadership and Planning (PLP). Rather than being sequential, these are concur-
rent and hierarchically related processes with PLP being on the top and proceeding downward
to the lower levels of administrative detail as follows: PLP = MSD = DBAT = VIVO.
The mission is the top-most concern of any NASA process after a project is created. The
mission defines what tasks are to be done, and in what order. Sample-based missions involve
the collection of material from a comet or a planet’s surface. A mapping-based mission
would map the surface of a planet or its satellites. Most missions are multi-facetted. For
example, Cassini involves flybys and mapping of planets, a moon of Saturn as well as instru-
‘mentation for atmospheric experiments for the released Titan probe. The DNP goal is to
build cross-cutting (XCUT) models that span all aspects of the mission. If a mission begins
with a modeled mission and modeled spacecraft then there will be easier and more effective
collaboration among designers, engineers and manufacturing staff. Off the shelf commer-
cial software for data flow diagrams and state-based diagrams have been used recently for
elaborating modeled spacecraft subsystems.

The ISE Goal is to “develop the capability for personnel at dispersed geographic loca-
tions to work together in a virtual environment, using computer simulations to model the
complete life-cycle of a product/mission before commitments are made to produce physi-
cal products” [15]. This is an ambitious goal, but it is on target with the increasing use
of modeling and simulation to improve the efficiency by which we design and manufacture

95

components, machines, aircraft carriers, process plants and spacecraft. It also builds upon
existing NASA projects (i.e., DNP) that attempt to steer engineering beyond paper and
documents to digital representations of objects. In short, we need to use today’s cheap
computer technology to manufacture virtual equivalents of what we buy and sell.

One of the problems with DNP is that it uses a centralized parameter database, around
which programs are situated so that each program reads-from and writes-to the database.
This central hub-spoke approach is an improvement over having separate programs each
with separate data files and repositories; however, a cleaner approach is to create an object-
oriented scene where all data are associated with the relevant objects. The central database
approach [9] was also used for the NASA Integrated Programs for AeroSpace Vehicle Design
(IPAD) Project [8]. TPAD used a relational database to store structure-based parameters
to be used by CAD and Finite Element programs at NASA Langley Research Center. This
was a dramatic improvement over separate data files, but it suffered from the fragmentation
of connecting data and model to the encapsulating object. With the design and creation of
a spacecraft, the scientists and engineers will interact and focus on the physical item—the
spacecraft itself. If we can create a process where we build a completely digital spacecraft,
then we will maintain this necessary collaboration among all programmers, modelers and
engineers. Parameters of a high-gain antenna should be made available to the engineer
who touches the antenna; the parameters need to be stored within the objects they define.
Moreover, all information about the spacecraft should be so oriented so that we also get to
programs and models via the digital spacecraft. The spacecraft itself becomes the primary
interface for all related models, programs, and data. Higher level abstract concepts such as
the mission can be materialized into objects that remind us of the basic mission elements.

2 Problems in Modeling

There are a number of problems that must be addressed once we begin to model. These
problems are by no means intrinsic to NASA. They are general problems of the larger mod-
eling community. Even though, a large segment of the engineering community acknowledges
the importance of modeling, the overall process modeling is not without its share of defects.
Significant changes need to be instrumented if we are to make modeling effective, for if it
is not a truly economic enterprise, modeling and simulation will always be seen as choices
of last resort, or “to be performed only when time and resources permit.” Let’s highlight
important modeling issues:

® Modeling Freedom: Many types of modeling exist, with mathematical models being
only one type. We need to reemphasize that models are for humans—not computers.
Therefore the models must appeal to the human senses to be effective.

96

e Modeling vs. Validation: The aspects of modeling that we discuss are based on design
principles. Even though models are said “to be good” when they validate physical
phenomena, all models are flawed in this sense—the model shows us a window of
valid behavior of an object and we use it to augment our intellect and otherwise
mathematical methods. The Bohr billiard ball model of the atom is still very useful
when used correctly even though we realize that billiard balls are not to be taken
literally [11, 1]. Validation is separate from modeling but is to be used in conjunction
with it. Modeling is what we do to understand and reason about a thing. Validation
is taking a model and comparing the model’s prediction with experiment.

e Code vs. Model: Tt is all too frequent that when one speaks of “a model” that one
is referring to an abstract representation that bears little or no formal relation to the
computer code that is supposed to represent the model. While code can be viewed as
a model in its own right, more common model forms are based on both equational
and highly-visual structures. It is essential to have generated code be driven from the
model and so all interaction is directly through the model so that we can best forget the
code, since code represents the cement whereas the model represents the multi-tiered
building created from the cement.

e Programs vs. Models: How do computer programs and models relate? The differences
between programming, as we generally learn it in Universities, and modeling reflect
a gradual change in our software and hardware technologies. Computer Science and
Engineering stands out as being separate from other Engineering disciplines in the
sense that everyone else talks about matter and physics and computer scientists talk
of data structures, procedures, relations and objects. Programming has evolved with a
heavy bias toward mathematical representation. The problem is that this sort of rep-
resentation bears little direct connection to physics or to other engineering disciplines.
Fortunately, movements are underway in many computer science areas that suggest
alternate, more physical, representational structures [17, 2, 19].

e Integration: NASA is in need of truly integrated virtual, 3D environments where the
objects to be modeled, as well as their models, live in the same space. To determine
the dynamics of the Cassini probe destined for Titan, one need only touch the 3D
probe (attached to the orbiter), activate its behavior field object and then navigate
the dynamics that are surfaced in a 3D form. Achieving this means that we have
to free the process of dynamic modeling from its two-dimensional home where it has
been imprisoned. Humans better understand and reason with environments that are
similar to those found in every day life. Data defining parameters of spacecraft sci-
ence instrumentation, for example, should be co-located with the virtual instruments.
Parameters are part of objects and the engineer wants to reason and work with these
parameters through the virtual objects that the data represent or modify. It may well
be that a very low-level underlying database schema supporting such interaction is still

97

needed, but it is critical to maintain the virtual connections to the data through the
physical spacecraft components. This might be seen as an issue of visualization or user
interface and it is. The act of modeling is all about developing and fostering sensory
appeal of the human to the modeled object. Thus, it becomes impossible to separate
the discipline of human-computer interaction from the task of modeling. They are one
and the same. The relational or hierarchical database should disappear from view since
it bears no relation to the spacecraft.

3 The Nature of Modeling

One physical object captures some information about another object. If we think about our
plastic toys, metal trains and even our sophisticated scale-based engineering models, we see
a common thread: to build one object that says something about another—usually larger
and more expensive—object. Let’s call these objects the source object and the target object.
Similar object definitions can be found in the literature of metaphors [12] and semiotics [18].
The source object models the target, and so, modeling represents a relation between objects.
Often, the source object is termed the model of the target. We have been discussing scale
models identified by the source and target having roughly proportional geometries. Scale-
based models often suffer from the problem where changing the scale of a thing affects more
than just the geometry. It also affects the fundamental laws applied at each scale. For
example, the hydrodynamics of the scaled ocean model may be different than for the real
ocean. Nevertheless, we can attempt to adjust for the scaling problems and proceed to
understand the larger universe through a smaller, more manipulable, version.

Later on in our education, we learned that modeling has other many other forms. The
mathematical model represents variables and symbols that describe or model an object.
Learning may begin with algebraic equations such as d = %at2 + vot + dy where d, v and a
represent distance, velocity and acceleration, and where dy and v represent initial conditions
(i.e., at time zero) for starting distance and initial velocity. These models are shown to be
more elegantly derived from Newton’s laws, yielding ordinary differential equations of the
form f = ma. How do these mathematical, equational models relate to the ones we first
learned as children?

To answer this question, let’s first consider what is being modeled. The equations
capture attributes of an object that is undergoing change in space (i.e., distance), velocity and
acceleration. However, none of the geometrical proportions of the target are captured in the
source since the structure of the equations is invariant to the physical changes in the target. A
ball can change shape during impact with the ground, but the equations do not change their
shape. If a ball represents the target, where is the source? The source is the medium in which
the equations are presented. This may, at first, seem odd but it really is no different than the
toy train model versus the actual train. The paper, phosphor or blackboard—along with the

98

© S CECI N'EST PAS UNE PIPES)

Figure 1: Painting by Rene Magritte. Is it a pipe or a model of a pipe?.

medium for the drawing, excitation or marking—has to exist if the equations are to exist.
In a Platonic sense, we might like to think of the equations as existing in a separate, virtual,
non-physical space. While one can argue their virtual existence, this representation-less and
non-physical form is impractical. Without a physical representation, the equation cannot be
communicated from one human to another. The fundamental purpose of representation and
modeling is communication. Verbal representations (differential air pressure) are as physical
as those involving printing or the exciting of a phosphor via an electron beam. Figure 1
displays a painting by the French surrealist artist Magritte, which captures the essence
of semiotics and reminds us that source and target objects both must exist. The painting
includes a phrase in French “This is not a Pipe.” The object is a painting representing a pipe,
or more accurately, it is a piece of paper representing a painting that, in turn, represents
a pipe. In the same sense as Magritte’s painting isn’t a pipe, likewise, the equations are
(source) objects that we interpret as attributes of other (target) objects. We see an equation
‘and think of the target’s attributes. This leaves us with the wonderful thought that when we
model, regardless of the type of model, we use different objects to represent the attributes
of other objects. It takes some serious practice to imagine that strange ink impressions on
paper might actually represent the position of a ball, train, or horse but that is part of the
wonder of modeling and of our ability to perform abstraction: any object can be used as a
surrogate for another object’s attributes. In this sense, the more abstract a source object in
its relation to the target, the fewer attributes will be found to be in common: a scale model of
a train preserves geometry under the right scale transformations whereas the paper and ink
(representing equations) preserves none of this geometry. The equations are said to be more
abstract than the scale model. There is one thing to keep in mind regarding mathematical
and event 2D image-based models. We use them so frequently because of economic reasons

99

and not because they reflect the best and most natural ways to model. Creating a scale
model of the ocean is much easier than using the real ocean. But using a piece of paper or a
blackboard is even easier. What if one could create virtual 3D spaces with ease on a portable
digital assistant (PDA) device? In the far future, we may even approach the environment
of the Holodeck as demonstrated in Star Trek: The Next Generation. The Holodeck is a
physical space where humans enter fully immersive and interactive 3D simulations. What
will modeling be like in such an environment? Will we still draw things on paper or will we
gesture to each other while forming 3D worlds that appear before our eyes? The ultimate
goal of modeling is not that different than what we did in the sandbox. The difference is
that now we can make a virtual sandbox.

4 Rube: Building the Infrastructure

Since 1989 at the University of Florida, we have constructed a number of modeling and
simulation packages. We'll begin with some early packages and proceed toward our devel-
opment of the Rube environment. The web will become a repository for objects as well as
documents. The first package was a set of C programs called SimPack [6]. SimPack is a col-
lection of C libraries and programs to allow the student to learn how to effectively simulate
discrete event and continuous systems. Discrete event simulation involves irregular leaps
through time, where each leap is of a different duration. Discrete event simulation requires
scheduling, event list data structures, and an ability to acquire resources and to set priorities.
Continuous simulation involves stepping through time using equal-sized time intervals, and
is most often associated with systems based ultimately on physical laws. SimPack began as a
library for discrete event handling and grew to support continuous modeling (with difference,
ordinary and delay-differential equation editors). Fully interactive programs were built upon
the core routines and inserted into the SimPack distribution. SimPack is widely used by a
number of sites worldwide.

By the early 90s, object-oriented programming was becoming increasingly common in
simulation. This suggested that we re-engineer part of SimPack to address the advantages
afforded by encapsulation, class hierarchies and re-use. In 1994, we announced OOSIM.
OOSIM development started with the event scheduling library in SimPack and expanded
upon it to make it more robust using C++.

Both SimPack and OOSIM were found lacking in the user-interface area. Most model
types used by scientists and engineers are visual. While we can encode such models in
text files, the user doesn’t really get a good feel for a model unless it is surfaced in a visible
form. In 1997, we began development on a fully visual and interactive multimodeling system,
OOPM (Object Oriented Physical Modeler) [5]. Multimodeling [7] is the practice of creating
a model at one level of abstraction where each model component can be refined at a level
below into a model of a different type than the one at the level above it [14]. For example,

100

the state components of a finite state machine can be refined into differential equations (a
different model type). OOPM is based on OOSIM and has a large amount of Tcl/Tk code
to support the graphical user interface (GUI). A distributed simulation executive (DSX) has
also been constructed for allowing functional block model components to be distributed over
the net, where each block represents a legacy code responsible for an individual simulation.
This system has recently been completed. During OOPM development, we learned a number
of lessons. The first lesson was that even though multimodeling had been explained with
several formal examples, we lacked an implementation and we had to carefully work out
how the scheduling of “multimodel trees” was to done. The second lesson learned was
that GUI development was extremely time consuming. Although everyone wants to use a
GUI, one must recognize the significant software engineering effort involved in creating a
robust interface. What may appear to be very minor problems from the software engineer’s
viewpoint turn out to be critical errors from the standpoint of a human-computer interface.
We found out that it is often better to have a primitive text-based interface that is robust
than a more complex GUI that has even a very small number of user interface anomalies.
Users must develop trust in an application if they are to use it with confidence.

In late 1998, we started designing Rube, named in dedication to Rube Goldberg [16],
who produced many fanciful cartoon machines, all of which can be considered models of
behavior. The procedure for creating models is as follows:

1. The user begins with an object that is to be modeled. For JPL, this can be the Cassini
spacecraft with all of its main systems: propulsion, guidance, science instrumentation,
power, and telecommunication. If the object is part of a larger scenario, this scenario
can be defined as the top-most root object.

2. A scene and interactions are sketched in a story board fashion, as if creating a movie or
animation. A scene is where all objects, including those modeling others, are defined
within the VRML file. VRML stands for Virtual Reality Modeling Language [3], which
represents the standard 3D language for the web. The Rube model browser is made
available so that users can “fly though” an object to view its models without necessarily
cluttering the scene with all objects. However, having some subset of the total set of
models surfaced within a scene is also convenient for aesthetic reasons. The modeler
may choose to build several scenes with models surfaced, or choose to view objects
only through the model browser that hides all models as fields of VRML object nodes.

3. The shape and structure of all Cassini components are modeled in any modeling pack-
age that has an export facility to VRML. Most packages, such as Kinetix 3DStu-
dioMax and Autodesk AutoCAD have this capability. Moreover, packages such as
CosmoWorlds and VRCreator can be used to directly create and debug VRML con-
tent.

4. VRML PROTO (i.e., prototype) nodes are created for each object and component.

101

This step allows one to create semantic attachments so that we can define one object
to be a behavioral model of another (using a behavior field) or to say that the Titan
probe is part of the spacecraft (using a contains field), but a sibling of the orbiter.
Without prototypes, the VRML file structure lacks semantic relations and one relies
on simple grouping nodes, which are not sufficient for clearly defining how objects
relate to one another.

. Models are created for Cassini. While multiple types of models exist, we have focused
on dynamic models of components, and the expression of these components in 3D.
Even textually-based models that must be visualized as mathematical expressions can
be expressed using the VRML text node. Models are objects in the scene that are no
different structurally from pieces of Cassini—they have shape and structure. The only
difference is that when an object is “modeling” another, one interprets the object’s
structure in a particular way, using a dynamic model template for guidance.

. Several dynamic model templates exist. For Newell’s Teapot (in Sec. 5), we used three:
FBM, FSM, EQN and for Cassini (in Sec. 6), we used one: FSM. These acronyms
are defined as follows: FSM = Finite State Machine; FBM = Functional Block Model;
EQN = Equation Set. Equations can be algebraic, ordinary differential, or partial
differential.

. The creative modeling act is to choose a dynamic model template for some behavior
for Cassini and then to pick objects that will convey the meaning of the template
within the scenario. This part is a highly artistic enterprise since literally any ob-
Ject can be used. In VRML, one instantiates an object as a model by defining it:
DEF Parthenon-Complex FSM {...}. In other words, a collection of Parthenon-type
rooms are interconnected in such a way that each Parthenon-Room maps to a state
of the FSM. Portals from one room to another become transitions, and state-to-state
transitions become avatar movements navigating the complex.

. There are three distinct types of roles played modelers in Rube. At the lowest level,
there is the person creating the model templates (FSM,FBM,EQN,PETRI-NET). Each
dynamic model template reflects an underlying system-theoretic model [7]. At the mid-
level, the person uses an existing model template to create a metaphor. A Parthenon-
Complex as described before is an example of an architectural metaphor. At the
highest level, a person is given a set of metaphors and can choose objects from the web
to create a model. These levels allow modelers to work at the levels where they are
comfortable. Reusability is created since one focuses on the level of interest.

. The simulation proceeds by the modeler creating threads of control that pass events
from one VRML node to another. This can be done in one of two ways: 1) using
VRML Routes, or 2) using exposed fields that are accessed from other nodes. Method
1 is familiar to VRML authors and also has the advantage that routes that extend

102

from one model component to an adjacent component (i.e., from one state to another
or from one function to another) have a topological counterpart to the way we visualize
information and control flow. The route defines the topology and data flow semantics
for the simulation. Method 2 is similar to what we find in traditional object-oriented
programming languages where information from one object is made available to an-
other through an assignment statement that references outside objects and classes. In
method 1, a thread that begins at the root node proceeds downward through each
object that is role-playing the behavior of another. The routing thread activates Java
or Javascript Script nodes that are embedded in the structures that act as models or
model components for the behaviors.

10. Pre- and Post-processing is performed on the VRML file to check it for proper syntax
and to aid the modeler. Pre-processing tools include wrappers (that create a single
VRML file from several), decimators (that reduce the polygon count in a VRML file),
and VRML parsers. The model browser mentioned earlier is a post-production tool,
allowing the user to browse all physical objects to locate objects that model them. In
the near future, we will extend the parser used by the browser to help semi-automate
the building of script nodes.

Rube treats all models in the same way. For a clarification of this remark, consider the
traditional use of the word “Modeling” as used in everyday terms. A model is something
that contains attributes of a target object, which it is modeling. Whereas, equation and 2D
graph-based models could be viewed as being fundamentally different from a commonsense
model, Rube views them in exactly the same context: everything is an object with physical
extent and modeling is a relation among objects. This unification is theoretically pleasing
since it unifies what it means to “model” regardless of model type.

5 Example 1: Newell’s Teapot

In the early days of computer graphics (c. 1974-75), Martin Newell rendered a unique set of
Bézier surface spline patches for an ordinary teapot, which currently resides in the Computer
Museum in Boston. The teapot was modeled by Jim Blinn and then rendered by Martin
Newell and Ed Catmull at the University of Utah in 1974. More recently, Fish produced
the image of the teapot in Fig. 2, which has the nice property of showing the internal and
external teapot shape. While at this late date, the teapot may seem quaint, it has been used
over the years as an icon of sorts, and more importantly as a benchmark for all variety of
new techniques in rendering and modeling in computer graphics. The Teapot was recently
an official emblem of the 25th anniversary of the ACM Special Interest Interest Group on
Computer Graphics (SIGGRAPH).

One of our goals for Rube was to recognize that the Teapot could be used to generate

103

Figure 2: Newell teapot rendering by Russ Fish, Copyright © 1995, University of Utah

another potential benchmark—one that captured the entire teapot, its contents and its
models. The default teapot has no behavior and has no contents; it is an elegant piece of
geometry but it requires more if we are to construct a fully digital teapot that captures a more
complete set of knowledge. In its current state, the teapot is analogous to a building facade
on a Hollywood film studio backlot; it has the shape but the whole entity is missing. In
VRML, using the methodology previously defined, we built TeaWorld in Fig. 3 Asin Fig. 2,
we have added extra props so that the teapot can be visualized, along with its behavioral
model, in a reasonable contextual setting. The world is rendered in Fig. 3 using a web
browser. World is the top-most root of the scene graph. It contains a Clock, Boiling_System,
and other objects such as the desk, chairs, floor and walls. The key fields in Fig. 4 are
VRML nodes of the relevant field so that the contains field is refers to multiple nodes for
its value. This is accomplished using the VRML MFNode type. The hierarchical VRML
scene graph for Fig. 3 is illustrated in Fig. 4. The scene contains walls, a desk, chair and
a floor for context. On the desk to the left is the teapot which is filled with water. The
knob controlling whether the teapot heating element (not modeled) is on or off is located
in front of the teapot. To the right of the teapot, there is a pipeline with three machines,
each of which appears in Fig. 3 as a semi-transparent cube. Each of these machines reflects
the functional behavior of its encapsulating object: Machinel for Knob, Machine2 for Water
and Machine3 for Thermometer. The Thermometer is a digital one that is positioned in
Machine3, and is initialized to an arbitrary ambient temperature of 0° C. Inside Machine,

104

Figure 3: Office scene with Newell Teapot, dynamic model and props.

we find a more detailed description of the behavior of the water as it changes its temperature
as a result of the knob turning. The plant inside Machine2 consists of Tankl, Tank2, Tanks3,
and four pipes that move information from one tank to the next. Inside of each tank, we
find a blackboard on which is drawn a differential equation that defines the change in water
temperature for that particular state. The following modeling relationships are used:

Pipeline is a Functional Block Model (FBM), with three functions (i.e., machines).

Machine is a function (i.e., semi-transparent cube) within an FBM.

Plant is a Finite State Machine (FSM) inside of Machine 2.

Tank is a state within a FSM, and represented by a red sphere.

Pipe is a transition within a FSM, and represented by a green pipe with a conical point
denoting direction of control flow.

Board is a differential equation, represented as white text.

105

World

\4 A 4 Y A 4
Clock ‘BoilingﬂSystem Furniture Floor
Y
contains
v S v A4
Pipeline Knob Water Thermometer
,_,v .
functions ibe ‘be ‘be
Y Y
MXcKine1 i Machine3
chnine #Aachmez Yac ne
:be
A 4
Plant
6 6
«v - AY A4
Tank1 Tank3 Pipe1 .fipeB
Y \4 A 4
Tank2 » Pipe2 4Pipe4
be! :
be bel

Y \ 4
Clock >Board1 Board3
A

e)Boardz

Walls

Figure 4: VRML Scene Graph for the Teapot and its models.

106

The following metaphors are defined in this example. The three cubes represent a sequence
of machines that create a pipeline. One could have easily chosen a factory floor sequence of
numerically controlled machines from the web and then used this in TeaWorld to capture
the information flow. Inside the second machine, we find a plant, not unlike a petroleum
plant with tanks and pipes.

The Pipeline and its components represent physical objects that can be acquired from
the web. For our example, we show simple objects but they have been given meaningful
real-world application-oriented names to enforce the view that one object models another
and that we can use the web for searching and using objects for radically different purposes
than their proposed original function. The overriding concern with this exercise is to permit
the modeler the freedom to choose any object to model any behavior. The challenge is to
choose a set of objects that provide metaphors that are meaningful to the modeler. In many
cases, it is essential that more than one individual understand the metaphorical mappings
and so consensus must be reached during the process. Such consensus occurs routinely in
science and in modeling when new modeling paradigms evolve. The purpose of Rube is not
to dictate one model type over another, but to allow the modelers freedom in creating their
own model types. In this sense, Rube can be considered a meta-level modeling methodology.

The simulation of the VRML scene shown in Fig. 4 proceeds using the dashed line
thread that begins with the Clock. The clock has an internal time sensor that controls
the VRML time. The thread corresponds closely with the routing structure built for this
model. It starts at Clock and proceeds downward through all behavioral models. Within each
behavioral model, routes exist to match the topology of the model. Therefore, Machinel
sends information to Machine2, which accesses a lower level of abstraction and sends its
output to Machine3, completing the semantics for the FBM. The FSM level contains routes
from each state to its outgoing transitions.

Fig. 5(a) shows a closeup view of the pipeline, that represents the dynamics of the
water, beginning with the effect of the turning of the knob and ending with the thermometer
that reads the water temperature. Figs. 5(b)-(d) show the pipeline during simulation when
the knob is turned on and off at random times by the user. The default state is the cold
state. When the knob is turned to the on position, the system moves into the heating state.
When the knob is turned again back to an off position, the system moves into the cooling
state and will stay there until the water reaches ambient room temperature at which time
the system (through an internal state transition) returns to the cold state. Temperature
change is indicated by the color of Water and Machine$, in addition to the reading on the
Thermometer inside of Machine3. The material properties of Machinel change depending
on the state of the knob. When turned off, Machine! is semi-transparent. When turned on,
it turns opaque. Inside Machine2, the current state of the water is reflected by the level of
intensity of each Plant. The current state has an increased intensity, resulting in a bright red
sphere. The dynamics of temperature is indicated at two levels. At the highest level of the
plant, we have a three state FSM. Within each state, we have a differential equation. The

107

Heaimy

(c) Heating State. (d) Cooling State.

Figure 5: The pipeline behavioral model and the behavioral FSM states defining the phase
of the water.

108

Heating

(a) Outside of Heating phase. (b) Inside of Heating phase.

Figure 6: Zooming into the heating phase (Tank2).

equation is based on Newton’s Law of Cooling and results in a first order exponential decay
and rise that responds to the control input from the knob. The visual display of temperature
change confirms this underlying dynamics since the user finds the temperature changing ever
more slowly when heating to 100°C or cooling back to the ambient temperature. Figs. 6(a)
and 6(b) show the outside of the heating phase (i.e., red sphere), and the inside of the phase
(i.e., blackboard with the first-order differential equation).

6 Cassini

‘At the time of this writing (June 1999), Cassini has made a Venus flyby. It was launched in
October 1997 and plans to make flybys of Venus, Earth and Jupiter on its way to Saturn.
Part of the mission is to visit Titan, a moon of Saturn. Cassini, illustrated in Fig. 7(a), shows
a schematic of the Cassini spacecraft while Fig. 7(b) shows an illustration of the Huygens
probe separation from the Spacecraft. The probe descends through Titan’s atmosphere and
relays science instrument data back to the orbiter. We used the Cassini mission as a basis for
a preliminary study on modeling techniques, and we decided to use an FSM dynamic model
template to show three phases for the probe: 1) Separation from the spacecraft, 2) Descent,
and 3) Impact. A scene was created by using an architectural metaphor for FSM states. In
VRML, the user is located in a room that contains a free-floating model of Titan and Cassini.
These models, as well as the model of the room, are visual, computer graphic models meant

109

(a) Spacecraft schematic. (b) Release of Huygens probe.

Figure 7: Cassini mission to Saturn and Titan, Courtesy of the Jet Propulsion Laboratory.

to act as scaled-down replicas of the actual objects. Scales are non-uniform since Cassini
would be much smaller with respect to Titan. The user can freely navigate this environment
to view Cassini and Titan. Cassini is shown, with probe attached, making a circular orbit
of the moon.

These sorts of visual, scale models are common in computer graphics but they represent
a small piece of information about Cassini and its mission. Fig. 8 displays snapshots of the
scene with Fig. 8(a) being the Parthenon room. On three of the four walls of this room, we
find color posters relating to the mission. These posters can be clicked within the browser
and the user is transported to an appropriate JPL web page identified by the poster content.
Under the poster, in Fig. 8(b), we have the Parthenon Complex, which is an architectural
metaphor for an FSM, showing the probe separation in 3 discrete phases. Fig. 8(c) shows
three rooms (A, B, and C). with the following structure: A — B — C. The initial entry
room and the three room environment were created from the Parthenon in Greece. This
is an aesthetic aspect of this modeling practice where the modeler is free to choose any
type of environment or metaphor. For Cassini, many other types of architectural metaphors
come to mind, including the layout of a JPL building or the entire JPL complex (since
this represents a common space well known to all JPL employees working on the Cassini
project). Even within the confines of the architectural metaphor, there are an infinite number
of choices. Within Room A, we may have an avatar that is positioned at the entrance to

110

the room (ref. Fig. 8(d)). There is also a scale model of Titan with Cassini performing the
dynamics associated with the phase associated with Room A (i.e., probe separation from the
spacecraft). Rooms B and C have similar 3D Titan models with dynamics being specified
for those phases. The avatar’s movement from Room A — B — C maps directly to the
dynamics of probe separation, descent and impact on Titan. The user is able to control the
simulation, involving the execution of the FSM, from the main gallery or from inside the

complex in Room A. Given this scenario for Cassini, there are some key issues which we
should address:

o s it a visualization? The work in Rube provides visualization, but models such as
Cassini and Newell’s Teapot demonstrate active modeling environments whose exis-
tence serves an engineering purpose and not only a post-project visualization purpose
for outside visitors. This sort of modeling environment is needed from the very start
of a mission—as an integral piece of the puzzle known as model design.

o Is it economical? Is this a lot of work just to create an FSM? Why go through the
bother of creating the Parthenon, the complex and the avatar? All of these items are
reused and so can be easily grabbed from the web. The concept of reuse is paramount
to the Rube approach where the metaphor can be freely chosen and implemented.
Without the web, Rube would not be possible. 3D object placement can be just as
economical as 2D object placement, but object repositories are required not only for
Cassini and Titan, but also for objects that serve to model the dynamic attributes of
other objects (i.e., the Parthenon). Another economical aspect centers on the issue of
computational speed for these models. Would creating a simulation in a more typical
computer language would be more efficient? The structure of objects and their models
within a VRML scene can be translated or compiled into native machine code as easily
as source code; the 3D model structure becomes the “source code.”

o What is the advantage? If we consider psychological factors, the 3D metaphor has
significant advantages. First, 3D spatially-specific areas serve to improve our memory
of the models (i.e., mnemonics). Second, graphical user interfaces (GUIs) have shown
that a human’s interaction with the computer is dramatically improved when the right
metaphors are made available. Rube provides the environment for building metaphors.
One should always be wary of mixed metaphors. We leave the ultimate decision to
the user group as to which metaphors are effective. A Darwinian-style of evolution
will likely determine which metaphors are useful and which are not. Aesthetics plays
an important role here as well. If a modeler uses aesthetically appealing models and
metaphors, the modeler will enjoy the work. It is a misconception to imagine that only
the general populous will benefit from fully interactive 3D models. The engineers and
scientist need this sort of immersion as well so that they can understand better what
they are doing, and so that collaboration is made possible.

111

.
S

(c¢) Removing the roof. (d) Side view of complex.

Figure 8: Scene for Cassini and the Huygens probe dynamics.

112

o Is this art or science? The role of the Fine Arts in science needs strengthening. With
fully immersive models, we find that we are in need of workers with hybrid engineer-
ing/art backgrounds. It is no longer sufficient to always think “in the abstract” about
modeling. Effective modeling requires meaningful human interaction with 3D objects.
So far, the thin veneer of a scale model has made its way into our engineering practices,
but when the skin is peeled back, we find highly abstract codes and text. If the inter-
nals are to be made comprehensible (by anyone, most importantly the engineer), they
must be surfaced into 3D using the powerful capabilities of metaphors [13, 12]. This
doesn’t mean that we will not have a low level code-base. Two-dimensional metaphors
and code constructs can be mixed within the 3D worlds, just as we find them in our
everyday environments with the embedding of signs. At the University of Florida, we
have started a Digital Arts and Sciences Program with the aim to produce engineers
with a more integrated background. This background will help in the production of
new workers with creative modeling backgrounds.

7 Key Architectural Benefits of Rube

The following are novel features of Rube and represent reasons for choosing elements of this
architecture:

o An Integrated Environment. There is no difference between objects modeling other
objects and objects acting in their traditional roles. The modeling and object environ-
ments are identical. A pipe can be used in a petro-chemical factory or in a Petri net.
Model components are chosen from the vast universe of VRML objects on the web.
Components in models are dynamic as for any object. Models need not be static.

o Modeling Freedom: Any 2D or 3D package can be used to create models. There is no
need for the Rube team to build a GUI for each model type; the model author can
freely choose among drawing and modeling packages.

e Model Design Flexibility: There is no predefined modeling method. If a set of objects is
to be interpreted as a model then one adds a small amount of “role playing” information
to the objects. Any number of model types can be supported. A side-effect of this
flexibility is the provision of natural multimodeling support.

o VRML encapsulation: VRML worlds can be stored anywhere over the web and posi-
tioned within an author’s world through a URL. No new standards have been created
outside of existing web standards and so Rube is built within the framework of VRML,
but we can find expressive distributed modeling and simulation capability by “piggy-
backing” on the capabilities of the standard. The VRML file that contains prototypes
with model fields is a digital object, the digital equivalent of the corresponding physical

113

object with all of its attributes. This encapsulation is possible due to the flexible syntax
and architecture of VRML (i.e., with key nodes such as PROTO, EXTERNPROTO,
Anchor nodes and Sensors being essential for the inclusion of modeling information).
The average 3D file standard would leave little room for the definition of models. We
propose our modeling methodology as a method for model construction with VRML.
In the VMRL community, this has the potential to alter, for example, how behavior
of objects are modeled. Java and selected behavior scripting languages are currently
used, whereas Rube offers the capability for some of this behavior to be modeled and
translated into Java using VRML, itself, to define behavior.

8 Reflections on the Art of Modeling

It is sometimes difficult to differentiate models used for the creation of pieces of art from those
used with scientific purposes in mind. Models used for science are predicated on the notion
that the modeling relation is unambiguously specified and made openly available to other
scientists. Modeling communities generally form and evolve while stressing their metaphors.
In a very general sense, natural languages have a similar evolution. The purpose of art, on
the other hand, is to permit some ambiguity with the hopes of causing the viewer or listener
to reflect upon the modeled world. Some of the components in worlds such as Fig. 3 could
be considered non-essential modeling elements that serve to confuse the scientist. However,
these elements may contribute to a more pleasing immersive environment. Should they be
removed or should we add additional elements to please the eye of the beholder? In Rube, we
have the freedom to go in both directions, and it isn’t clear which inclusions or eliminations
are appropriate since it is entirely up to the modeler or a larger modeling community. One
can build an entirely two dimensional world on a blackboard using box and text objects,
although this would not be in the spirit of creating immersive worlds that allow perusal of
objects and their models.

It may be that a select number of modelers may find the TeaWorld room exciting and
pleasing, and so is this pleasure counterproductive to the scientist or should the scientist
be concerned only with the bare essentials necessary for unambiguous representation and
communication? Visual models do not represent syntactic sugar (a term common in the
Computer Science community). Instead, these models and their metaphors are essential for
human understanding and comprehension. If this comprehension is complemented with a
feeling of excitement about modeling, this can only be for the better. Taken to the extreme,
a purely artistic piece may be one that is so couched in metaphor that the roles played
by objects isn’t clear. We can, therefore, imagine a kind of continuum from a completely
unambiguous representation and one where the roles are not published. Between these two
extremes, there is a lot of breathing space. Science can be seen as a form of consensual
art where everyone tells each other what one object means. Agreement ensues within a
community and then there is a mass convergence towards one metaphor in favor of another.

114

We are not proposing a modification to the VRML standard although we have found
that poor authoring support currently exists in VRML editors for PROTO node creation
and editing. We are suggesting a different and more more general mindset for VMRL—
that it be used not only for representing the shape of objects, but all modeling information
about objects. VRML should be about the complete digital object representation and not
only the representation of geometry with low-level script behaviors to support animation.
Fortunately, VRML contains an adequate number of features that makes this new mindset
possible even though it may not be practiced on a wide scale. While a VRML file serves as
the digital object, a model compiler is also required for the proper interpretation of VRML
objects as models.

9 Summary

There is no unified modeling methodology, nor should there be one. Instead, modelers should
be free to use and construct their own worlds that have special meaning to an individual
or group. With Rube, we hope to foster that creativity without limiting a user to one or
more specific metaphors. Rube has a strong tie to the World Wide Web (WWW). The web
has introduced a remarkable transformation in every area of business, industry, science and
engineering. It offers a way of sharing and presenting multimedia information to a world-
wide set of interactive participants. Therefore any technology tied to the web’s development
is likely to change modeling and simulation. The tremendous interest in Java for doing
simulation has taken a firm hold within the simulation field. Apart from being a good
programming language, its future is intrinsically bound to the coding and interaction within
a browser. VRML, and its X3D successor, represent the future of 3D immersive environments
on the web. We feel that by building a modeling environment in VRML and by couching
this environment within standard VRML content, that we will create a “trojan horse” for
simulation modeling that allows modelers to create, share and reuse VRML files.

Our modeling approach takes a substantial departure from existing approaches in that
.the modeling environment and the object environment are merged seamlessly into a single
environment. There isn’t a difference between a circle and a house, or a sphere and a
teapot. Furthermore, objects can take on any role, liberating the modeler to choose whatever
metaphor that can be agreed upon by a certain community. There is no single syntax or
structure for modeling. Modeling is both an art and a science; the realization that all
objects can play roles takes us back to childhood. We are building Rube in the hope that by
making all objects virtual that we can return to free-form modeling of every kind. Modeling
in 3D can be cumbersome and can take considerable patience due to the inherent user-
interface problems when working in 3D using a 2D screen interface. A short term solution
to this problem is to develop a model package that is geared specifically to using one or
more metaphors, making the insertion of, say, the Parthenon complex rooms a drag and
drop operation. Currently, a general purpose modeling package must be used carefully

115

position all objects in their respective locations. A longer term solution can be found in the
community of virtual interfaces. A good immersive interface will make 3D object positioning
and connections a much easier task than it is today.

There are many unanswered questions concerning the Rube architecture and the affect
it may have on the vast community of model authors. For example, many communities have
their own internal standards for behavior representation. VHDL (Very High Level Hardware
Description Language) is one such community. They have expended vast resources into the
use of VHDL. Should they switch to VRML or is there a way that the two standards can relate
to one another? We feel that conversion techniques between the VRML file and the other file-
based standards will ameliorate the potentially harsh conditions associated with a migration
of standards. Some standards such as HLA (High Level Architecture) do not include a
direct provision for model specification since HLA is focused on the execution of distributed
simulators and simulations regardless of how they were created and from what models they
were translated. In such cases, Rube will provide a complementary technology to aid in the
modeling process. UML (Unified Modeling Language) unifies select visual object-oriented
formalisms for representing models of software. There is no reason why someone cannot build
a complete 2D representation using a 2D modeler such as CorelDraw or AutoCAD and then
construct a grammar to produce the necessary target language code segments needed for
UML model execution. Therefore, Rube is a more general procedure for model translation
than that provided by most metaphor-fixed visual formalisms. In this sense, the following
analogy holds: Rube is to Modeling-Language-X as Yacc is to Computer-Language-Y. Rube
is a general purpose model creation facility and Yacc is a compiler-compiler used to create
compilers for arbitrary computer language grammars.

We will continue our research by adding to Rube and extending it to be robust. In
particular, we plan on looking more closely into the problem of taking legacy code and
making it available within the VRML model. This is probably best accomplished through
TCP/IP and a network approach where the Java/Javascript communicates to the legacy
code as a separate entity. We plan on extending the VRML parser, currently used to create
the model browser, so that it can parse a 3D scene and generate the Java required for the
VRML file to execute its simulation. Presently, the user must create all Script nodes. The
model browser will be extended to permit various modes of locating models within objects.
A “fly through” mode will take a VRML file, with all object and model prototypes, and
place the models physically inside each object that it references. This new generated VRML
file is then browsed in the usual fashion. Multiple scenes can be automatically generated.

Acknowledgments

My first thanks go to my students. They are making Rube and the ‘virtual sandbox’ come
alive through their hard work and inventive ideas and solutions. In particular, I would like to

116

thank Kangsun Lee, Robert Cubert, Andrew Reddish, Tu Lam, and John Hopkins. I would
like to thank the following agencies that have contributed towards our study of modeling
and simulation, with a special thanks to the Jet Propulsion Laboratory where I visited for
three weeks during June 1998: (1) Jet Propulsion Laboratory under contract 961427 An
Assessment and Design Recommendation for Object-Oriented Physical System Modeling at
JPL (John Peterson, Stephen Wall and Bill McLaughlin); (2) Rome Laboratory, Griffiss Air
Force Base under contract F30602-98-C-0269 A Web-Based Model Repository for Reusing
and Sharing Physical Object Components (Al Sisti and Steve Farr); and (3) Department
of the Interior under grant 14-45-0009-1544-154 Modeling Approaches & Empirical Studies
Supporting ATLSS for the Everglades (Don DeAngelis and Ronnie Best). We are grateful
for their continued financial support.

References

(1] Ian G. Barbour. Myths, Models and Paradigms. Harper and Row Publishers, 1974.
[2] Grady Booch. Object Oriented Design. Benjamin Cummings, 1991.

[3] Rikk Carey and Gavin Bell. The Annotated VRML 2.0 Reference Manual. Addison-
Wesley, 1997.

[4] National Research Council. Advanced Engineering Environments: Achieving the Vision,
Phase I, 1999. http://www.nap.edu/catalog/.

[5] Robert M. Cubert and Paul A. Fishwick. MOOSE: An Object-Oriented Multimodeling
and Simulation Application Framework. Simulation, 70(6):379-395, June 1998.

[6] Paul A. Fishwick. Simpack: Getting Started with Simulation Programming in C and
C++. In 1992 Winter Simulation Conference, pages 154-162, Arlington, VA, December
1992.

- [7] Paul A. Fishwick. Simulation Model Design and Ezecution: Building Digital Worlds.
Prentice Hall, 1995.

[8] Paul A. Fishwick and Charles L. Blackburn. Managing Engineering Data Bases: The
Relational Approach. Computers in Mechanical Engineering (CIME), pages 816, Jan-
uary 1983.

[9] Paul A. Fishwick, Thomas R. Sutter, and Charles L. Blackburn. Prototype Integrated
Design (PRIDE) System: Reference Manual, Volume 2: Schema Definition. Technical
Report 172183, NASA, July 1983. NASA Contractor Report, Contract NAS1-16000.

[10] Daniel S. Goldin, Samuel L. Venneri, and Ahmed K. Noor. Beyond Incremental Change.
IEEE Computer, 31(10):31-39, October 1998.

117

[11] Mary Hesse. Models and Analogy in Science. University of Notre Dame Press, 1966.

[12] George Lakoff. Women, Fire and Dangerous Things: what categories reveal about the
mind. University of Chicago Press, 1987.

(13] George Lakoff and Mark Johnson. Metaphors We Live By. University of Chicago Press,
1980. ,

[14] Kangsun Lee and Paul A. Fishwick. A Methodology for Dynamic Model Abstraction.
SCS Transactions on Simulation, 1996. Submitted August 1996.

[15] John B. Malone. Intelligent Synthesis Environment: Engineering Design in the 21st
Century. Slide Presentation.

[16] Peter C. Marzio. Rube Goldberg, His Life and Work. Harper and Row, New York, 1973.

[17] Pierre-Alain Muller. Instant UML. Wrox Press, Ltd., Olton, Birmingham, England,
1997.

[18] Winfried Noth. Handbook of Semiotics. Indiana University Press, 1990.

[19] James Rumbaugh, Michael Blaha, William Premerlani, Eddy Frederick, and William
Lorenson. Object-Oriented Modeling and Design. Prentice Hall, 1991.

[20] David B. Smith and L. Koenig. Modeling and Project Development. In Fifth Interna-
tional Workshop on Simulation for European Space Programmes - SESP ’98, November
1998.

[21] S. Wall. Reinventing the Design Process: Teams and Models. In International Astro-
nautical Federation Specialist Symposium on Novel Concepts for Smaller, Faster and
Better Space Missions, Redondo Beach, CA, April 1999.

[22] S. D. Wall, J. C. Baker, J. A. Krajewski, and D. B. Smith. Implementation of System
Requirements Models for Space Missions. In Eighth Annual International Symposium
of the International Council on Systems Engineering, July 26-30 1998.

Author Biography

Paul A. Fishwick is Professor of Computer and Information Science and Engineering at
the University of Florida. He received the BS in Mathematics from the Pennsylvania State
University, MS in Applied Science from the College of William and Mary, and PhD in Com-
puter and Information Science from the University of Pennsylvania in 1986. He also has
six years of industrial/government production and research experience working at Newport

News Shipbuilding and Dry Dock Co. (doing CAD/CAM parts definition research) and

118

at NASA Langley Research Center (studying engineering data base models for structural
engineering). His research interests are in computer simulation, modeling, and animation.
Dr. Fishwick is a Fellow of the Society for Computer Simulation (SCS), and a Senior Mem-
ber of the IEEE Society for Systems, Man and Cybernetics. Dr. Fishwick founded the
comp.simulation Internet news group (Simulation Digest) in 1987, which now serves over
15,000 subscribers. He has chaired workshops and conferences in the area of computer sim-
ulation, and will serve as General Chair of the 2000 Winter Simulation Conference. He was
chairman of the IEEE Computer Society technical committee on simulation (TCSIM) for
two years (1988-1990) and he is on the editorial boards of several journals including the ACM
Transactions on Modeling and Computer Simulation, IEEE Transactions on Systems, Man
and Cybernetics, The Transactions of the Society for Computer Simulation, International
Journal of Computer Simulation, and the Journal of Systems Engineering. He has published
over 100 refereed articles, authored one textbook Simulation Model Design and Ezecution:
Building Digital Worlds (Prentice Hall, 1995), and co-edited three books.

119

Digital Object Multimodel Simulation
Formalism and Architecture

R. M. Cubert and P. A. Fishwick

Department of Computer & Information Science and Engineering
University of Florida; CSE Building Room E301; Gainesville, FL 32611-6120 USA

ABSTRACT

The object-oriented approach known as heterogeneous behavior multimodeling hc: been developed, used, and re-
ported elsewhere, to facilitate creation, modification, sharing, and reuse of object-oriented models and the simulations
created from those models. The digital object extends multimodeling so that digital objects can be shared and com-
bined in ways that ordinary multimodels cannot. We describe an abstract base multimodel and several derived
instantiated multimodel types. We also describe a transformation which takes a digital object to a simulation pro-
gram. We give formal definitions of multimodeling, digital ob ject, and the transform.ation, then from these definitions
prove correctness of execution sequencing of simulations created by applying the transformation to digital objects.
Closure under coupling of digital objects follows as a corollary, subject to an assumption regarding experimental
frame. We then construct an abstract base architecture for manufacture, flow, and persistence of digital objects.
From the base architecture we derive and instantiate a suite of architectures, each targeted at a distinct set of re-
quirements: one to operate locally, another with internet protocols, a third with web protocols, and a fourth to allow
digital objects to interoperate with other kinds of simulations.

Keywords: Simulation, Object-Oriented Modeling, Model Abstraction, Heterogeneous behavior multimodel, Dig-
ital Object

1. INTRODUCTION

The concept of digital object extends heterogeneous behavior multimodeling. Heterugeneous behavior multimodeling
has been developed, used, and reported elsewhere, to facilitate creation, development, modification, and reuse of
object-oriented models and the simulations created from those models. Although Object Oriented Physical Modeling
(OOPM) and its implementation of behavior multimodels provide an ability to manage complex patterns of behavioral
abstraction in simulation modeling, heterogeneous multimodeling has suffered from lack of underlying formalism; and
while multimodels could be readily refined with additional detail (downwards), they could not be readily combined
with other multimodels (upwards), thus limiting their potential for sharing, reuse, and participation in a model
repository. Digital objects overcome these limitations. In what we here term the “base paper”! the authors reported
results of some work extending multimodeling at AeroSense 1999. In reporting new work during the past year, the
present paper in effect extends and refines the base paper: work reported in the base paper is restated quite briefly
and only as required to preserve logical continuity; accordingly, the present paper relies heavily on the reader’s
familiarity with the base paper. The base paper defines several types of multimodels and how to build digital objects
as multimodels; it explores interfaces which conduct information between the outside world and a digital object, and
traces which conduct information within a digital object; it shows how arrangement of what we term “constituents”
of a multimodel imposes a partial order on execution sequence; and, it discusses heierogeneous multimodel hierarchy.
It goes on to show how to transform a multimodel to a simulation; examines temporal and logical behavior sequences;
elucidates a problem which we term “inversion”, and shows how to resolve this problem without affecting correctness;
it provides algorithms for transforming a digital object multimodel to a simulatic.. program in such a way that the
behavior sequence of such simulations is correct by construction; and, proves the correctness of the transformation
as regards behavior sequence. It also provides the comprehensive “Teapot” example,

In Sect. 2, we define digital object including the input-output information tuple, and the “DOT” transform
which takes a digital object to a multimodel; we present an abstract base multimodel and a modeling grammar, and
discuss coupling and closure under coupling. In Sect. 3 we present a transformation from multimodel to simulation

Author E-mail information: rmc@cise.ufl.edu, fishwick@cise.ufl.edu

120

In Enabling Technology for Simulation Science 1V, Alex F. Sisti, Editor,
Proceedings of SPIE Vol. 4026 (2000) ® 0277-786X/00/$15.00

program, including a way to rearrange constituents, and explanation of the inversion elimination algorithm. In
Sect. 4 we demonstrate the correctness of the transformation of Sect. 3, with additional definitions and a theorem, a
special case in scheduling, and showing closure of multimodeling under coupling subject to an assumption regarding
experimental frame. In Sect. 5 we report an abstract base architecture for manufacture, flow, and persistence of
digital objects. From the base architecture we derive and instantiate four configurations, each targeted at a distinct
set of requirements: one to operate locally, another with internet protocols, a third with web protocols, and a fourth
to allow digital objects to interoperate with other kinds of simulations. Sect. 6 is the conclusion.

2. DIGITAL OBJECT

DEFINITION 2.1 (ABSTRACTION). A human activity consisting of focusing on some aspects of a system, while
ignoring other aspects which are not germane to a particular context or objective®. Related to two senses of the verb
abstract: to consider apart from application to a particular instence; and, to summarize®®,

DEFINITION 2.2 (OBJECT). That which can be circumscribed as a distinct unit of eristence and/or abstraction;
having state, behavior, and identity; and which can be observed, manipulated, and/or affected.

DEFINITION 2.3 (MODEL). A system, either constructed or discovered, which, in a particular context, is a metaphor
for another system and serves as surrogate for that other system.

DEFINITION 2.4 (CORRESPONDENCE). A metaphor, ezpressed as a pairwise relation: suppose system S1 is to be
modeled, that object O1 is identified as a germane part of S1, and that there ezists in the universe some object O2.
The ordered pair C; = {01, 02} denotes that in 2 model of S1, 02 stands for or represents O1. C; is a correspondence.
A model has a set {C;} of such correspondence relations.

DEFINITION 2.5 (MODELING). A human activity which uses abstraction and (usually numerous instances of) corre-
spondence, to express an overall representation (the model) based on an overall metaphor in the mind of the author.
The model serves as surrogate for a system, for the purpose of managing complezity end/or attaining insight.

DEFINITION 2.6 (ATOM). Typically, text representing source code in @ programming language.

DEFINITION 2.7 (HETEROGENEOUS MULTIMODEL). A model represented as a graph® in which each verter and each
edge may be an atom or ¢ multimodel of any of various types, combined arbitrarily irrespective of type. Multimodel
types include Finite State Machines (FSM), Functional Block Models (FBM), Rule Based Models (RBM), and System
Dynamics Models (SDM).

DEFINITION 2.8 (CONSTITUENT). A vertex or edge of a multimodel graph which ezhibit behavior, and which can be
refined into more multimodels. Constituents are: in an FSM, states Q and transitions A; in an FBM, blocks B; in
an RBM, premises ¥ and consequences K; and, in an SDM, auziliaries A.

DEFINITION 2.9 (INPUT-OUTPUT INFORMATION TUPLE). An input-output information tuple [is o tuple
{In,InOut,Out, R}, where In is an ordered set of inputs, InOut is an ordered set of items which are both input and
output, Out is an ordered set of outputs, and R is a return type. Each element of In and of InOut is an ordered
triple {T,N,V}, and each element of Qut is an ordered pair {T, N}, where T is a parameter type, N is a parameter
name, and V is a(n optional) behavior returning a value. A parameter type may be a native type such as integer,
real, or string; or, any abstract type. A parameter name is typically a character string. I ensures uniform treatment
of inputs and outputs across all multimodel types and atoms.

DEFINITION 2.10 (D1GITAL OBJECT INTERFACE). A digital object interface I is a tuple {N, H,G,I,& }, where
N is a name, H is descriptive hypertext URL, G is a graphical icon URL, and £ is a behavior element. N is typically
a character string, and all elements except N are optional. When a behavior element is called, the actual parameters
in the call correspond to the formal parameter lists (In followed by InOut followed by Out) of Iotuple, except that
an actual input parameter can be omitted if the corresponding formal parameter has a value V, in which case V is
the default value.

DEFINITION 2.11 (D1GITAL OBIECT). Digital object extends heterogeneous multimodel with interface I. A digital
object is a composition of subordinate multimodels and atoms. When arranged as a tree whose nonterminal vertices
are multimodels and whose leaves are atoms, its hierarchy corresponds to levels of abstraction,® and any number of
such levels is permissible.

121

2.1. The DOT Transform

Digital objects are imported using the “DOT Transform,” named after our Digital Object Tool which performs
this transformation. Digital object D shown in Fig. 1 part (a) is to be imported into some larger digital object
multimodel (not shown). Behavior elements of the inputs in its Interface are shown as In, ---In,. Constituents
of the multimodel at the root of D are shown as C; ---C,,. The effect of the transformation is shown in part (b),
as multimodel M with n + k constituents. This figure is the underlying mechanism which supports a capability to
compose digital objects by drag-and-drop.

(a) dot-3a (b) dot-3b

Figure 1. DOT Transform.

When we import a digital object we make its multimodel an integral part of the overall multimodel representing the
larger digital object. To do so, inputs (Ins and InQuts) of its interface must be resolved. Each input has a behavior
element £ which is internal to the digital object. This behavior element is used as the default. However, if something
from outside is connected to this input, then that “something” is used instead. Importing digital object D whose
interface has k inputs and whose root multimode! has n constituents involves the conversion shown in Fig. 1 into a
multimodel with n + k constituents.

2.2. Multimodel Types

DEFINITION 2.12 (TRACE). A path conducting an object or a value of native type from a source to a destination. Let
M be a multimodel with an interface including In, € InUInout and O4 € InOutUQut. Let {Ci} be the constituents
of M, with each C; having an interface including In; , € the i*h element of In U InOut and O; € the ith element
of InOut U Qut. Let N denote the attributes of M. There are seven kinds of traces: (1) from In, of M to Ingy, of
Cd; (2) from In, of M to a € N; (3) from Osp 0f C, to O4 of M; (4) from a € R to Oy of M; (5) froma € R to
Ingq of Ca; (6) from O, of Cy to @ € R; and, (7) from Osp of Cy to Ing, of Cy. However, if M is an atom, it has
no constituents and its traces can only be of types (2) and (4), conducting data between the outside world and the
atom.

Abstract base multimodel is an abstract base class, embodying characteristics common to all multimodel types;
we instantiate some particular subtypes of it; it also forms a basis for extensibility to future new subtypes. A base
muitimode! is a 3-tuple {f , N, T} Iisan input-output information tuple (see Definition 2.9). N is a set of attributes
which may be of native type or abstract type, and which retain information in the multimodel. T is a set of traces.
Multimodel types subsumed by this theory appear in Definition 2.7 and below. These (among others) are presented
by Fishwick® and examples appear in the base paper. Denote the set of multimodel types as 9t = {FSM, FBM,
RBM, SDM}. For multimodel M, let MT (M) denote its multimodel type. Then MT (M) € M. Each multimodel
type derived from the base multimodel has a distinct set of constituents.

Finite State Machine (FSM) is a tuple {I1,Q,4,90,4:, R, T}, where Q is an ordered set of states, A is a set of
transitions, go € Q is the start state, and g, € Q is the current state. A transition d,; joins the two states ¢; and q;.
and is directed from g; to g;. Behavior of a finite state machine is the behavior of g. followed by the behavior of some
or all eligible transitions. Eligible transitions are those which originate at 9c, i€, {dc,; Vj}. The behavior of 4. ; is
to decide whether to change g. to g;. Eligible transitions are explored in an ordering corresponding to the ordering
of Q, until one of them decides to change g, or until no eligible transitions remain to be explored. Let pi,; denote

122

the (boolean-valued) predicate associated with the decision made by d;;. In a well-formed finite state machine, at
most one predicate among those for transitions originating at g, that is of the set {pc,; V 7}, is true at one particular
time. If all such predicates are false, the result is the equivalent of a reflexive transition associated with a predicate
which is the complement of the disjunction of the other predicates.

Functional Block Model (FBM) is a tuple {I,B,R,T}, where B is an ordered set of blocks. Behavior of a
functional block model is the behaviors of all its blocks, in sequence, corresponding to the ordering of B.

Rule-Based Model (RBM) is a tuple {I,R,X, T}, where Ris {R;, 1 <1 < n}, where each R; is the tuple
{4, Ai, Ki}, consisting of ; a premise (lowercase Greek letter psi), A; an arc, and «; (lowercase Greek letter kappa)
a consequence. Behavior of a rule-based model is the behavior of all premises followed by the behaviors of none,
some, or all, of the consequences. When there are muitiple premises the sequence of premise behavior corresponds
to the ordering of R. The behavior of each premise is to decide whether to excite the behavior of the associated
consequence to occur. An arc conducts a decision from ¥; to ; which excites k; to perform its behavior. When
multiple consequences occur, they occur in a sequence corresponding to the ordering of R.

System Dynamics Model (SDM) is a tuple {I,S,L,R, A, F, C,X, T}, where S is a set of sources, L is a set of
levels, R is a set of rates, A is an ordered set of auxiliaries, F is a set of flow arcs, and C is a set of causal arcs.
The metaphor for an SDM is a hydraulic system, with inlets (S), fluid reservoirs (L), and valves (R) which effect
flow rates. Arcs are of two kinds: flow arcs and causal arcs. Flow arcs in a system dynamics model resemble pipes
which carry fluid from sources, through valves to reservoirs, and from reservoirs through valves. Just as electrical
wires carry control signals to solenoid valves in a hydraulic system, causal arcs in a system dynamics model carry
information (typically from levels and auxiliaries) to control flow rates. A rate is specified to within a multiplicative
factor by a causal arc connecting either a level or a source to the rate. A causal arc from an auxiliary to a rate
provides the multiplicative factor. An auxiliary can be a constant, an attribute value, or a constituent. Behavior of
a system dynamics mode! is the behavior of its constituent auxiliaries in a sequence corresponding to the ordering of
A, followed by behavior of a set of difference equations derived from the way arcs relate rates, levels, and auxiliaries.
In these difference equations, the state variables are levels (L) of the system dynamics model.

2.3. Constituent Partial Order and Hierarchy

In a simulation corresponding to a multimodel, it is necessary to order the occurrence of behavior of constituents to
ensure conformance to the proper partial ordering imposed by dependencies associated with traces. Ordering can
usually be determined by a topological sort based on traces and the nature of the constituents, carried out, in most
cases, mechanically without human intervention. A constituent has a list of predecessors. Partial order is represented
as a set of such lists. C, precedes C in the partial order if and only if C; € predecessors(Cy). Zeigler’ at pages
108-112 discusses ways to determine partial order, as does Fishwick® at page 150. Our approach generates a correct
sequence by choosing a total order from the partial order, but which one is chosen is of no consequence to simulation
correctness.

DEFINITION 2.13 (R). The set of all constituents which do not change the value of any attribute; typically from A
and ¥; similar to accessor methods. Correctness of behavior sequencing is unaffected by certain rearrangements of
the order of occurrence of constituents which are € R.

We represent behavior of a digital object as a hierarchy, in particular a tree T. We partition the set of all
such trees into three classes: those of height 1 ({71}), those of height 2 ({7:}), and all others ({7m}). T is of
degree 0 and has an atom as its root. Standing alone, 7; represents a digital object written as monolithic source
code, thus subsuming legacy code under our theory. T: can occur within 73 or Ty, as a leaf. 73 is of degree n and
has root R. MT(R) € M, and R has n children. R represents a multimodel; each child of R is an atom which
represents a constituent of that multimodel. Children of R are arranged, from left to right, in an order resulting
from a sort whose primary key is the order of appearance of each constituent type in the definition of constituents
above; and, whose secondary key is the position of each element within its ordered set. Thus in an FSM, states
followed by transitions, g1, --.,qn, 8(1,2)s - - - »0(n—1,n) ; i0 AN FBM, blocks, by,...,b,; in an RBM, premises followed
by consequences, Y1, .. .,%n, K1, . .-, Knj and, in an SDM, auxiliaries, a1,...,a,. Tm has properties similar to those of
T2, and also has has refinement of constituents, and a mix of multimodels and atoms as constituents. Let generalized
type ® = 9M U {atom}. Let {C;} be the set of all vertices in 7, except R. Every C; is a constituent of some
multimodel, and MT(C;) € &.

123

Multimodel hierarchy tree T satisfies two heterogeneity requirements. Let My be a multimodel vertex € T, and
let Mo have as its constituents multimodel vertices M, ..., M,. We know that MT(M,) e MVie {0,...,n).
The first heterogeneity requirement is: the MT(M,) Vi € {0,...,n} may all be chosen independently, as n + 1
arbitrary choices. Let M be a muitimodel vertex € T; and let the constituents of M be vertices Cy,...,Cn. We
know that GT(C,) € & Vi € {1,...,n}. The second heterogeneity requirement is: G7(C;) Vi € {1,...,n} may all
be chosen independently of one another and independently of MT(M), as n arbitrary choices.

2.4. Coupling

Coupling is the joining of multimodels and constituents in a hierarchy. The two kinds of coupling are intralevel
and interlevel. Given a set of behavior elements which are sibling constituents of & behavior multimodel, intralevel
coupling is the mechanism for relating the sibling behavior elements to one another. Intralevel coupling is specified by
six rules: (1) topology is that of a well-formed directed graph; (2) constituents are partitioned into sets, with elements
of each set subject to rules governing behavior of that set; (3) like items are uniquely ordered; (4) corresponding items
are placed into unique correspondence; (5) traces specify data dependencies; and, (6) partial ordering is determined
by the traces. Given a digital object or any behavior multimodel hierarchy, interlevel coupling is the mechanism for
relating a behavior multimodel or atom at one level to behavior multimodels or atoms at the levels above and below.
Interlevel coupling is specified by three rules: (1) hierarchy, (2) heterogeneity, and, (3) adherence to multimodel
semantics specified in Sect. 2.2. Our theory must exhibit closure under coupling, to permit us to freely combine
models without concern for their various multimodel types or details of their internal structure, and to mix and
match digital objects. Zeigler® at page 60 states:

“A formalism is said to be closed under composition if any composite system obtained by coupling compo-
nents specified by the formalism is itself specified by the formalism. ... The significance of such closure is
that it facilitates hierarchical construction of models by recursive applications of the coupling procedure.”

Although Zeigler’s work does not contemplate heterogeneity in the composition he mentions above, his definition
of closure is applicable to OOPM, with the understanding that in OOPM the “composition” mentioned above is
heterogeneous multimodeling. With the definitions already given, Zeigler’s requirements for closure under coupling
are met for digital objects if we resolve two things: first, the experimental frame issue; and second, the select
issue. The experimental frame issue has to do with conditions under which a simulation is valid for the system it
represents. While the experimental frame issue is important, we are concerned here with verification rather than
validation, so we leave the experimental frame issue as outside the scope of the present inquiry, and make the
assumption that the experimental frames intersect. The select issue has to do with how to decide the order in which
a number of simultaneously scheduled events should be made to occur. Thus, if we can show that transformation
of a digital object to a simulation program results in all events (especially simultaneous events) occurring in a
proper sequence, this will suffice to show closure under coupling of digital objects. Selecting from simultaneous
events will be discussed in Sect. 3, with algorithms for transforming digital objects to simulation programs presented
in Sections 3.2.1 and Sect. 3.3.1. These algorithms will be shown by an inductive proof in Sect. 4 to result in
construction of a simulation exhibiting correct behavior sequence. Closure under coupling of digital objects in the
context of simulations generated under this theory then follows as a corollary in Sect. 4.4.

With closure under coupling, multimodels may be extended upwards or downwards. An upward construction
supports integration or reuse; for example, several existing digital objects are combined into a new larger digital
object built as a multimodel. The preéxisting digital objects are the constituents of this multimodel. In such an
upward extension for integration, new digital object Ty is created, having an interface, and a multimodel of any
type € M. Constituents of this multimodel are existing digital objects Dy, ..., Dy, each of which may in turn be
further refined. In a more general upward construction, new digital object Dy is created, with a multimodel! whose
n constituents are {£;} such that GT(£,) € &, Vi € {1,...,n}. Multimodels may also be extended downwards, to
facilitate that style of project development, or to selectively refine a model in just those places where fidelity must
be increased to meet objectives of the model author. In a downward extension, an atom is replaced by an arbitrary
multimodel £ such that G7(£) € M. Multimodeling may itself be extended by defining new multimodel types; that
is, by adding elements to 9, subject to satisfying coupling requirements.

124

digital-object
interface

io-info

in

inout

out

default
behavior-hierarchy-tree
]
imported-digital-object
dynamic-multimodel
base-multimodel
trace

from-type

to-type

end-point

m

mm-type

fsm

fbm

rbm

rule-set

Lke&bog
UUUUUUUUUUUUUUUUUUUUUUUUUUUUU

constituent

4

2.5. Gm, the Digital Object Multimodel Grammar

For a digital object, its hierarchy tree 7 captures the topology of every multimodel therein, specifying each mul-
timodel’s connections to its constituents. Information in T is, however, only part of what is needed to define the
multimodel. We also need other information, from the conceptual model, interfaces, and traces. Gaq, which appears
as Grammar 2.1, is a modeling grammar described in extended BNF. Many nonterminal symbols are left undefined
when the meaning is clear or when the particulars are not of central relevance.

GRAMMAR 2.1 (DIGITAL OBJECT GRAMMAR).

conceptual-model interface

name text icon ijo-info [behavior-hierarchy-tree]
{in}* {inout}" {out}" return-type

IN type name [default]

INOUT type name [default]

OUT type name

&

6

dynamic-multimodel | digital-object | atom
base-multimodel mm-type {constituent}"’ m
base-multimodel mm-type M

io-info R {trace}’

TRACE from-type end-point to-type end-point
IN-PARAMETER | ATTRIBUTE | MMU-OUT-PARAMETER
MMU-IN-PARAMETER | ATTRIBUTE | OUT-PARAMETER
[constituent] parameter-id | attribute

fsm | fbom | rbm | sdm

FSM | FBM | RBM | SDM

Q A g g

B

rule-set

¥ K

SLRAFC

{constituent}*

{constituent}*

{constituent}™*

{constituent}*

{constituent}*

{constituent}*

5

3. TRANSFORMING A MULTIMODEL TO A SIMULATION

We specify a transformation to mechanically and unambiguously take behavior multimodels describing digital object
D to simulation program P. This capability confers benefits which have been enumerated by the authors else-
where.®1% P exhibits correctness with regard to the sequence of occurrence of its behavior elements; the nature of
the transformation is such as to ensure this correctness. Transformation of model hierarchy tree 7 thus corresponds
to transforming D to P such that P has correct behavior sequence.

125

3.1. Behavior Sequences

Consider temporal and logical sequence of occurrence of behaviors of behavior elements in P. Let {&,, 1 <i < n}
be the behavior elements of D, with MT(£;) € GT Vi. {£} corresponds to vertices in T, the hierarchy tree of D.
Typically D’s behavior requires the behavior of each &; to occur many times during an execution of the simulation,
and there is a requirement that temporal and logical sequence of occurrence of the behaviors of {£} be correct.
Simulation time is real-valued and monotonically increasing. Each occurrence of behavior element &, is associated
with some value ¢t of simulation time. In £ x t space, in which we assign each behavior occurrence to a point,
and where we denote a behavior occurrence as &, each point in this space is occupied by at most one behavior
occurrence. Sometimes each constituent requires its own event chain, separate from that of other constituents, and
from that of the multimodel to which the constituents belong. This situation arises frequently in queuing models
with multiple token sources. The result is a need to support multiple schedulable units. With this in mind, we state
three behavior sequencing correctness requirements.

Temporal Sequence Let @ and b be non-negative real numbers denoting values of simulation time, and let < be
the “happens before” operator. Thena<b = & <Ejp.

Occurrence of Simultaneous Called Behaviors There is a requirement for appropriate sequencing of the set
of behavior elements occurring at time t; that is, {£;, V i}. If £ and &; are constituents of £, and the set of £'s
constituents are ordered in a linear sequence (as they are in all the multimodel definitions) and both &; and £; must
occur at time t, then the second sequencing correctness requirement is: 1 < j = &i¢ < Eir-

Occurrence of Simultaneous Scheduled Behaviors There is also a requirement for appropriate sequencing of
simultaneous behaviors, but in a more general situation, reflecting multiple scheduling units. Above, behavior ofa
multimodel includes directly causing occurrence of the behavior of its constituents. We say the multimodel “calls”
its constituent. But when constituent behaviors are independently event-scheduled, each with its own event chain,
such as in a traditional queuing model, several such behaviors may be required to occur at the same simulation time
¢, The event scheduler must then cause (behaviors corresponding to) such events to occur in a correct order, yet we
do not wish to burden the event scheduler with detailed knowledge about internals of multimodel structure. We use
event priority to induce correct event scheduling when several events are scheduled to occur at the same simulation
time. This approach hides the complexity of sequencing, mapping information about sequencing onto event priority,
a well-known and common capability of many event schedulers. In every event scheduler, a future event list is sorted.
The primary sort key is simulation time. In an event scheduler which understands event priority, the future event
list secondary sort key is event priority. Define the scheduling priority p(-) of an event chain to be the same for every
event in the chain, and let the scheduling priority be integer-valued with the convention that larger values mean
higher priority. Thus if events {e1, €2, - -, €n} from different event chains are all scheduled to occur simultaneously
at time t;, and if each e; has an associated scheduling priority p(e;), and if all the p(-) are unique, then the first
event to occur will be {e; | p(e:) > p(e;), Vj # i} and remaining events will occur in descending order of p(-). Let
k be the scheduling priority of event e in the event chain. Thus, p(ex) = k, and if &; and &; are constituents of £,
and &; and &; are scheduled, and £'s constituents are ordered by priority p, and both &; and £; must occur at time
t, then p(&) > p(€;) —= Eir < Ejr. The third sequencing correctness requirement then is: i<j = pl&) > pl&).

3.1.1. Sequencing Schedulable Units

Digital object D has multimodel hierarchy tree 7. Each vertex £ € T corresponds to a behavior element. Every £
except the root of 7 has a parent. Let M = parent(£), and the relation between £ and M is that of constituent
to multimodel. Let {C;} denote the constituents of M. Then £ € {C;}. Every simulation of interest has at least
one schedulable unit (SU), corresponding to an event chain which causes the behavior of the root of 7. A behavior
element € which must have an independent event chain requires an SU separate from the SU of M, and separate
from the SU of every other C;. A 3D representation will be presented for a collection of related SU’s representing
a simulation, with each SUj lying in the z-y plane at z = k. A scheduling structure for a simulation may have
one or many SU’s. We shall show how to make the z-coordinate of an SU determine behavior sequence which is
deterministic, temporally and logically sequenced, and hence correct.

126

3.2. Inversion, Rearrangement, and Promotion

All scheduled constituents occur before any called constituent occurs. If a multimodel has some constituents called
and others scheduled, a problem may arise. The order of occurrence of constituents is the order of their appearance
from left to right as siblings in the hierarchy tree. If in this sequence appears ...C;,Cit; ... such that CT(C ;) = called
and CT(C,,,) = scheduled then an inversion exists, because all called constituents have the same priority as that of
the multimodel to which the constituents belong, so there exists no priority between that of the called constituents
and that of the parent multimodel; hence no way to schedule C;4; to occur between C; and their parent multimodel.
Two ways to resolve inversion without affecting correctness are rearrangement and promotion. Rearrangement is
preferred (because it is “free” in the sense that it imposes no runtime overhead on a simulation), but sometimes
rearrangement cannot be used. Then we use promotion which is always available.

In P, the order of occurrence of constituents must conform to the partial order imposed by dependencies associated
with traces. Within partial order we are free to choose any total order. One specific rearrangement is of constituents
within Q. The FSM definition requires the states to appear in order gqy,...,qn, but correct behavior sequence is
satisfied by any ordering of {g;}, because exactly one state occurs at one value of simulation time, by definition of
an FSM, hence temporal order suffices, no matter what the ordering of sibling states. Another rearrangement is
of those constituents which are € R. Permitted rearrangements are within a constituent group only; they cannot
cross a group boundary. For example, in an FSM, where the constituents are states and transitions, the invariant is
@ < A. We may rearrange within group Q and within group A, but we must never rearrange so as to result in the
condition 3 6;; < g¢. In an FSM for which A C R, any order of occurrence of {4; ;} will do, because at simulation
time ¢, only the transitions in A, = {d; j|i =position of g, in @} can occur, the transitions in A4 have no partial
ordering imposed by traces because none of them alters any attribute used by any of the others (because A, C ®),
and at most one of the predicates of A, can be true at any simulation time (by the FSM definition), hence the
order in which we execute transitions € A4, will not affect which one (if any) we find to be true. In an RBM for
which ¥ € R, any order of occurrence of {1;} will do, because the premises in ¥ have no partial ordering imposed by
traces because none of them alters any attribute used by any of the others (because ¥ C R), and a premise influences
exactly one consequence, which is a consequence different from the consequence influenced by any other premise,
i.e.: 9; affects ; if and only if 1 = j, and ¥ < K, so if we denote as K, the subset of K which occurs at time t,
then K; = {x;|); = true}, so the order in which we learn which premise is true, and which consequences should
occur, does not affect membership in K nor the order of execution of its elements, which is determined solely by the
position within K of «;.

When we cannot rearrange to eliminate inversions, we promote inverted constituents from called to scheduled.
A promoted constituent can then have any requisite scheduling priority, hence any order of occurrence, hence no
inversion. However, promotion imposes additional runtime cost on the simulation, in the form of event scheduling
overhead. Thus rearrangement is preferable.

3.2.1. Inversion elimination algorithm

The RESOLVEINVERSIONS(M) algorithm (Algorithm 3.1) resolves inversions in constituents of a multimodel M in
two ways, rearrangement and promotion:

ALGORITHM 3.1 (RESOLVEINVERSIONS).

RESOLVEINVERSIONS(M)

1 while 3 inversion in multimodel M (at constituents C; and C;y1)

2 if CieQACiy1€Q

3 or C;EAANCLHEAANCERACLER

4 or C,’E‘I’/\C.’+1E\I’AC;'E§R/\C,'+1€&

5 or C; and C;y, are FBM blocks and - C; € predecessors(Ciy1)
6 then swap C; end Ciyy

7 else break

8 while 3 inversion in multimodel M (at constituents C; and Ciyy)

9 CT(C,) = scheduled

127

B;bl b2 b3 b4 bs Q;ql q A;su 8y
O ® @ O O O O .f ?
AT e T
' b2 b3 ql q2 P 8,

O¢=
®
O«
Oz
P
O
B
o
Ok

................

(a) Rearrangement (b) Promotion

Figure 2. Resolving Inversions: Rearrangement preferred, promotion otherwise. Hollow circles are
calied constituents; filled circles are scheduled constituents; inversion may exist when a hollow circle is to
the left of any filled circle.

The first while loop in lines 1 through 7 of Algorithm 3.1 performs rearrangement. It scans the siblings which are
constituents of a particular multimodel. To see the operation of this loop, consider the top row of Fig. 2(a). For the
sake of exposition, suppose b, and b; are scheduled. An inversion is found involving b, and b;. Because by Abs the
condition in line 5 of the algorithm is true. As a result b, and b, are swapped by line 6 of the algorithm, and we have
the situation shown in the second row of Fig. 2(a). The while loop condition this time finds the inversion involving
b; and b3, and the body of the while loop again executes. Because b; £bs, the line 5 condition is again true, and line
6 again executes. The result is as shown on the third row of Fig. 2(a). This time when the while loop condition is
tested, it is false because no more inversions exist, and the rearrangement loop ends. In this example the condition
in line 8 is not met, so no promotion takes place. The algorithm terminates with no inversions remaining among the
constituents of the multimodel.

The second loop in lines 8 and 9 of Algorithm 3.1 performs promotion. To see its operation, consider the top
row of Fig. 2(b), whose constituents belong to an FSM. The condition in line 1 is true because there is an inversion
involving g, and 6;,. However, none of the conditions in lines 2 through 5 of the algorithm is true, so line 7
executes, terminating the loop. At line 8, the condition is true, so g2 is promoted, and we have the situation shown
on the second row of Fig. 2(b). At line 8 again, the condition is still true, and this time @1 is promoted, leading
to the situation shown on the third row of F ig. 2(b). Now at line 8, the condition is false because no inversions
remain, so the loop terminates, and the algorithm terminates, with all inversions resolved. Finding an intergroup
inversion immediately ends all attempts at rearrangement. While a more sophisticated algorithm could temporarily
ignore intergroup inversions and keep trying to resolve (other) inversions by rearrangement until the only inversions
remaining are those requiring promotion, such efforts are sometimes wasted because we may subsequently find we
may need to promote the same constituents we Just rearranged; hence we leave the algorithm as is.

3.3. Simulation Scheduling Structure F

Suppose D has been constructed by a model author. D has a representation as a multimodel, corresponding to which
is 7. We now elaborate a structure for generating correct behavior element sequence of a simulation program from
T. A principal feature of the structure is its representation of the schedulable units of the simulation, and the way
it relates schedulable units to behavior elements. 7 is of course planar (two-dimensional). Each vertex appears as
a circle. The root is at level 0. We construct F , a 3D simulation scheduling structure which we show to have an
interpretation which corresponds to a mechanical unambiguous generation of P having the property that temporal
and logical sequence of the occurrence of the behaviors of its behavior elements is correct. The structure corresponds
to, and preserves the information of, T; indeed, 7 is a projection in 2D of the 3D F. Let & be the root of any subtree

128

of 7, and let {C;, 1 < j < n} be the n constituents of £. Let CT be the set {scheduled, called}, and denote the
causation type of C; as CT(C;). Let CT(C;) € CT V¥ C;. The only vertex not included in this constraint is the root
of 7. Let R denote the root of T. Let CT(R) = scheduled. Let F be the scheduling structure corresponding to 7.
The number of vertices in F is the same as the number of vertices in 7. Information content of each vertex £ s in
F is identical with that of the corresponding vertex & in 7, except for the addition of a new non-negative integer
attribute p in £y . Whereas &, is a circle, £;is a cylinder, whose base is the circle which is vertex &, located in the
plane z = 0. The height of £;’s cylinder is the value of p(€ 7). Thus the value p(&;) is the distance from the z = 0
plane to the top surface of the cylindrical &5 vertex; p(€f) > 0V £; denoting that the top of each vertex is in or
above the z = 0 plane.

3.3.1. Elevator Algorithm

Given D and a corresponding 7p, copy Tp to (initially flat) scheduling structure Fp, with p(€) =0V £ € Fp; thus,
Fop lies entirely in the plane z = 0 at this juncture. Then, recursive procedure Elevator(€, z) first resolves inversions,
if any, then traverses Fp, setting p of each vertex in such a way that Fp takes on its proper 3D shape. Elevation
of vertices of Fp is performed by calling Elevator(R,0), where R is the root of Fp, zero is the initial value of z;
recursion does the rest. Traversal order is a variant of preorder: visit the root, then traverse its subtrees, starting
with the rightmost, and proceeding from right to left. To elevate the structure rooted at £ given non-negative integer
z, we execute ELEVATOR(E, z). The algorithm and detailed exposition of its operation appear in the base paper.

3.3.2. Special case for scheduled constituents € R

In Section 3.1.1 we stated that every scheduled constituent must have a scheduling unit different from every other
sibling constituent, and this is reflected in the Elevator algorithm. This requirement can be relaxed somewhat under
a special circumstance. If C; and Cy,., are (adjacent) sibling constituents of multimodel M and C; and Ci+1 are both
scheduled and C; and Cj4; are both in the same group (e.g., A), and C; and Cit1 are both € R, then C; and C;y,
can both be assigned the same elevation. We leave it to the event scheduler to determine the order of occurrence, as
that order does not affect simulation correctness. This relaxation is not necessary but can be used when a structure
with minimal elevation is desired.

3.4. Summary

Starting with D and its corresponding 7', we constructed F from 7. F is in effect a 3D version of the 2D 7. We
related a property of ¥, namely the z-coordinate of the top surface of each cylindrical vertex in F , via scheduling
priority, to the behavior sequence of P corresponding to D.

4. PROOF OF CORRECT BEHAVIOR SEQUENCING
4.1. Introduction

It remains to show that F and hence P exhibit correct behavior sequence. This is done with an inductive proof.
Closure under coupling of digital objects follows as a corollary. Let b; denote a vertex in 7 or F, where i is an index
set over 7 or F. Let ¢, denote an associated event; that is, occurrence of the behavior b; at simulation time t. The
“occurs before” operator < in the expression €i,t1 < €j,¢2 means that either: b; occurs at simulation time ¢, b; occurs
at simulation time ¢,, and ¢; < t5; or, two behaviors occur at the same simulation time t1 =t and b; precedes b,
in the execution sequence at this instant of simulation time. The “occurs before” operator is also used between two
sets of behaviors, such as A < B, to mean a; € A < b; € BV i,j. Let P denote a simulation program. Suppose the
code of P consists of code units {b;}, and that each code unit b; either implements some dynamic multimodel, e.g.,
a functional block model, or is an etom. Suppose also that if b; implements a behavior multimodel, then the code
logic of b; is such that the logical sequence in which &; calls subordinate code units is fixed.

DEFINITION 4.1 (CALLING SEQUENCE). Given simulation program P with a set of code units {b:}, a calling
sequence is defined at each code unit b; as an ordered list whose elements are the code units (if any) which b; calls,
and whose sequence is the unique logical sequence in which the calls occur in b;. The overall calling sequence for P
is defined as the sequence produced by starting with the code sequence for the main level code unit of P, inserting
immediately before each element the calling sequence of that element, and continuing until no new insertions remain
to be performed. 129

DEFINITION 4.2 (CORRECT BEHAVIOR SEQUENCE). Correct behavior sequence requires:

(1) events occur in temporal order: t1 < t2 — €in <€50 Vi j;
(2) events which occur at the same simulation time occur in a sequence
consistent with constituent groupings defined for each kind of multimodel:
for an FSM, Q < A;
for an RBM, ¥ < K;

(3) behaviors which occur at the same value of simulation time occur in an
erecution sequence consistent with o partial order imposed upon sibling
constituents of a multimodel by traces, i.e.:

b; € predecessors(b;) = e; 1 < €j1; and,

(4) constituents of a multimodel occur before the multimodel occurs,

where “occurrence” of a multimodel means determining its outputs.

THEOREM 4.1 (CORRECT TRANSFORMATION OF DIGITAL OBJECTS). Given well-formed digital object D with
hierarchy tree T, and given simulation scheduling structure F constructed by transforming T using ELEVATOR and
RESOLVEINVERSIONS algorithms. Then a simulation program P

e whose code units are in one-to-one correspondence with the vertices of F,
* whose calling sequence is the same as the sequence produced by (left-to-right) preérder traversal of F, and

» whose scheduling priorities are numerical values assigned so that the scheduling priority of a code unit of P
equals the height of the cylinder of the corresponding vertez of F,

has correct behavior sequence.

The third requirement for correct behavior sequence is weaker in several ways than the ordering in multimodel def-
initions. We exploited this to perform rearrangement within Q, A, and ¥. Note the absence above of any specification
of semantics of atoms of D in Theorem 4.1. We make no claim that P is a correct program, only that it correctly im-
plements multimodel semantics and that the behavior sequence of its behavior elements is correct. We combine atoms
and small digital objects into larger digital objects in such a way that the combining action introduces no error. Pro-
gressively larger digital objects we build up will be correct in two respects: implementation of multimodel semantics,
and behavior sequence. Although outside the scope of this paper, it follows that if the atoms can be shown to be
correct, then P can be shown to be correct as well.

4.2, Special Case: F is Flat

We consider an important special case with some D and its corresponding 7. D has an arbitrary amount of refinement.
Denote the root of D as by. CT(by) = scheduled in consequence of grammar production rules {reported in the base
paper) for the scheduling structure. It often happens that CT(b;) = called for all vertices other than &. The
construction algorithms then build F, without rearrangement, promotion, or elevation: F is flat, entirely located in
the plane z = 0, and is identical to 7. F and hence P exhibit correct behavior sequence, shown as follows: temporal
order of occurrence of F as a whole is determined by the event scheduler, satisfying requirement 1 of Dfn. 4.2. The
logical ordering of behavior elements in a plane at any simulation time ¢ is wholly determined by the structure of the
code emitted at the time P is created. This order corresponds to (left to right) postorder traversal of F, satisfying
requirements 2 through 4 of Dfn. 4.2. Hence P exhibits correct behavior sequence.

4.3. The General Case

A preliminary version of the proof appears in the base paper; the full proof appears elsewhere.!! A sketch of the
proof follows. Consider some D and its corresponding 7. F is constructed from 7. T is in one of three groups (see
Sect. 2.3) which partition the set of all model hierarchy trees.

F € {Ti}U{T2}: In T; the root is an atom. An atom is indivisible; hence, its behavior sequence is vacuously correct.
In 7, children of the root are all atoms. Correct sequencing is shown by an argument which partitions the children
into two sets (called and scheduled) and then examines the algorithms ELEVATE and RESOLVEINVERSIONS with
regard to the height of each vertex of F, which is also its scheduling priority. The behavior sequence of the scheduled
children is shown to be from left to right, before any called sibling constituent, and before the root, and thus is
correct. All constituents are thus in correct behavior sequence relative to one another and to the multimodel which

they constitute.
y 130

F € {Tm): T has an arbitrary amount of refinement. F is constructed from 7 following the construction algorithms.
An inductive proof shows that F and hence P exhibit correct behavior sequence. Induction is on induction variable
n (lowercase Greek eta). A value of 7 is a property of every vertex in T, and hence of F. 7 is a measure related to
the length of the path distance of a vertex from the root of 7 if we place T with it root down and its leaves up, then
n of the highest leaf is zero, and 7 increases as we move downward toward the root. An algorithm for calculating 7 is
given in the base paper. The proof starts by considering n = 0. All such vertices are atoms, whose behavior sequence
is vacuously correct. Therefore behavior sequence of every vertex for which 7 = 0 is correct. The proof continues
with 7 = 1. Some vertices for which 5 is 1 may be atoms because 7 in general is not a complete tree, and so has
leaves at a number of different levels. A vertex for which 7 is'1 which is not an atom is the root of a model tree of
height 2. Trees of height 2 were previously shown to have correct behavior sequence. Hence all subtrees for whose
root 7 = 1 have correct behavior sequence. Next comes the inductive step, in which the inductive hypothesis is that
behavior sequence is correct for any subtree of F for whose root n < k. It is required to show behavior sequence
correct for any subtree of F for whose root 7 = k. The argument is similar to that above for a tree of height 2. The
inductive step completes the proof.

4.4. Closure of Multimodeling under Coupling

Consider digital object D built as a behavior multimodel, for which we construct a mode! hierarchy tree 7 which has
an arbitrary amount of refinement. F is constructed from 7. The behavior sequence of the simulation program P
generated from F has been shown to be correct. Coupling and closure under coupling were introduced in Sect. 2.4.
Intralevel coupling is specified by six rules: (1) topology is that of a well-formed directed graph; (2) constituents
are partitioned into sets, with elements of each set subject to rules governing behavior of that set; (3) like items are
uniquely ordered; (4) corresponding items are placed into unique correspondence; (5) traces specify data dependencies;
and, (6) partial ordering is determined by the traces. The first four conditions above are met by multimodel
specifications in Sect. 2.2. The fifth and sixth conditions are met by the specification of traces in Sect. 2.3. Interlevel
coupling is specified by three rules: (1) hierarchy (see Sect. 2.3); (2) heterogeneity (see Sect. 2.3); and, (3) adherence
to multimodel semantics specified in Sect. 2.2. These are captured in a recursive definition in the behavior multimodel
grammar (Grammar 2.1 on page 6) which allows integration of multimodels, digital objects, and atoms into larger
digital objects. As mentioned in Sect. 2.4 we make the assumption that all experimental frames intersect. We proved
that transformation of D to P results in all events (especially simultaneous events) occurring in a proper sequence.
Therefore digital objects exhibit closure under coupling.

5. ARCHITECTURE
5.1. Introduction

The purpose of the architecture is to support creation, modification, examination, combination, and reuse of digital
objects. The base architecture is shown in Fig. 3. It is an abstract base class. Configurations are derived from
it, and only these derived classes are instantiated. Digital objects created under one configuration can be used
without modification under any other configuration. Seven Intrinsic components (biocks with heavy outline in
Fig. 3) are creations of this research. Five Erternal components (blocks with thin outline) are the work of others.
The architecture is essentially a way of getting the external components (including the human model! author) to
cobperate in creating and sharing digital objects. Intrinsic components are the architecture’s way of making this
happen. Some components and paths are unused in some configurations, and some paths have bifurcations to indicate
they play several roles.

5.2. Components

Intrinsic components are Bridge, Translator, Engine, Scenario, Digital Object Warehouse, Digital Object Tool (DOT),
and Plug-in/Applet/CGI. “Plug-in" means “Web browser plug-in”. Plug-ins are often written as a C++ dynamically
linked library (DLL). CGI is the Common Gateway Interface, and a CGI “script” may be, for example, a Perl script
or a C++ executable. DOT is digital object tool, closely tied to Modeler, helping to find and reuse digital objects.
Scenario is used to visualize simulation runtime output. Translator automates the mapping of a model to 2 computer
simulation program. Engine carries out the simulation. Translator, Engine, and Scenario have been described by the
authors elsewhere.?® The warehouse stores and organizes model information, so that it can be retrieved by DOT.
Bridge is the top level user interface for the model author. It provides access to the other components, such as
DOT, Modeler, Translator, Engine, and Scenario: using Bridge, the model author can have Translator transform a

131

Modeler

Translator

DOT

— ||

Bridge , Plug-in or
Model applet or CGI
Author Web Browser

Compiler
(Ct+or
Java)

Digital Object
Warehouse

| _OODB |

Scenario f——————] Engine

Figure 3. Base Architecture.

multimodel! description, produced by Modeler, into a simulation program, and then activate Scenario, which in turn
activates Engine and displays visualization of simulation output produced by Engine. DOT helps the model author
to create, reuse, or combine digital objects, as well as to browse among digital objects. DOT attaches to the Modeler
and the model author works with the modeler through DOT, and DOT sets things up for Modeler. This permits
DOT to provide a context for modeling, to fetch all needed model representations, to resolve collisions, if any, and
to make everything available to the Modeler. External components are the human model author, modeler, compiler,
Web browser, and object-oriented database (OODB). Modeler is used by the human model author to build and
change digital objects. Modeler has been describe by the authors elsewhere.* The OODB provides an optional back
end at the Warehouse, for scalability of the architecture, and for replication of information and similar capabilities.

5.3. Configurations

Four configurations (Iocal, internet, browser plug-in, and applet) appear as Fig. 4. They suit different needs, provide a
migration path as needs change, and make the architecture extensible and tolerant of change. Some paths use TCP/IP
on the Internet (among Modeler, Translator, and Warehouse); others use the Web-based HyperText Transmission
Protocol (HTTP) with a Web browser such as Netscape or Microsoft Internet Explorer, plus a browser plug-in; or
via XML. The language spoken on TCP/IP and XML pathways is Digital Object MultiModel Language (DMML).1!
These configurations by no means exhaust all possibilities; for example, a preliminary investigation was made into an
XML configuration. This helped shape DMML as a markup language so that it can be defined by an XML Document
Type Definition (DTD). The configurations and the components are described in detail elsewhere.!! Model authors
can use the local configuration to preview the work of others. The Internet configuration can be used to allow
a workgroup to share digital objects and to engage in collaborative development. A platform-dependent plug-in
configuration relies on a Web browser to interact with the model author and control and interact with the other
components. An applet configuration can be used for the same purpose but with greater platform independence
while eliminating the need to install development software locally. Finally, if DMML is widely accepted, the Digital
object MultiModel language (DMML) used by the components can be defined to an XML—capable Web browser, and
components can communicate in DMML directly via the Web browser, obviating the necessity for a browser-plug-in.
Multimodel descriptions, expressed in DMML, are usable in any of these configurations, or other future configurations

derived from the base architecture.
132

Modeler Modeler
Translator Translator
ll DOT].l DOT
[Bridge | Bridge
Model Model
Author Author
L = T ,_
Compiler Compiler
€+ (C+)
Local fil i Digital Object
€ system Warehouse
OODB
Scenario Engine Scenario Engine
(a) Local (b) Internet
Modeler
Translator Translator
DOT
Applets:
Modeler/DOT]
7 Plug-in Scenario
Model Model Engine
Author [Web Browser | Author | Web Browser i
Compiler Compiler |:
€+ (Java)
Digital Object Digital Object
Warehouse Warehouse
OODB __OoDB |
Scenario Engine
(c) Plug-in (d) Applet

Figure 4. Configurations: Configurations derived from the abstract base architecture are shown above:
local (a), internet (b), plug-in (c), and applet (d). Blocks with heavy outline are intrinsic; other blocks are
ezternal. DOT is digital object tool. OODB is object-oriented database. From (a) to (b), note replacement
of the local file system with Warehouse; from (b) to (c), note replacement of Bridge with a browser plug-in;
and, in (d), note that Modeler, Scenario, and Engine have all become applets.

133

Local configuration appears in Fig. 4(a). As its name suggests, this configuration is self-contained within a (typically
single-user) computer system. Model descriptions are expressed in DMML. Model and other information is passed
through the local file system. A directory tree organizes the collection of digital objects. Some flexibility if available
by using symbolic links or shortcuts, but a complex collection of digital objects is beyond the intended use of this
configuration. Model persistence is accomplished using the local file system. A digital object is defined in DMML in
a set of flat ASCII files, all located in the same directory. Benefits of this approach include: such model definitions
are simple, compact, portable, relatively easy to read, understand, and modify; model definition files get backed
up as part of local system backups; models can be put on diskette, into a .zip archive, or FTP'd; as a software
engineering tool, local files generated by hand can eliminate some development bottlenecks due to circular waits,
But the implementation which uses the flat files for model persistence is stand-alone software, with no provision for
sharing, thus limiting reuse; moreover, this software can be used on a machine only after it is obtained and installed
on that machine. Reasons such as privacy, national security, performance, or proprietary software, may make this
configuration preferable to the internet or Web-based configurations.

Internet configuration appears in Fig. 4(b). Two major features which distinguish this configuration from the local
configuration: the presence of Warehouse and use of sockets and connection-based Transmission Control Protocol
(TCP) over Internet Protocol (IP) for communication on several paths. Persistent digital object definitions reside
within Warehouse rather than a local file system, resulting in several benefits: digital objects reside where they can
be best be cataloged, shared, and reused; a digital object can be modeled on one machine and transformed to a
simulation program on a different machine or at the warehouse, supporting the ability to build platform-specific
Engines if needed; and, a digital object can be modeled on a machine with limited or no disk space. TCP /IP is
used to communicate between DOT and Warehouse, permitting warehouse to be located on a machine different
from model authors’ machines, and allows model authors to share access to the warehouse. TCP/IP also provides
bidirectional communication between Engine and Scenario with sockets, allowing Scenario to operate synchronously
with Engine and to be located on either the same or a different machine. Because the connection is bidirectional,
it allows not only the kind of operations which playing back the history file permits, but also allows Scenario to
control Engine during the simulation execution, by changing simulation parameters. The TCP/IP socket output
of Engine also affords a ready connection point for attachment to an external visualization or other analysis tool
located anywhere on the Internet. The presence of Warehouse and use of TCP /IP do not per se make a “Web-based”
environment. One reason is that Warehouse communicates with the other components with TCP /IP, which is an
Internet protocol, rather than a Web-based protocol such as HTTP, XML, or CGI.

Plug—in configuration appears in Fig. 4(c). It orchestrates interaction among locally installed software components,
such as a Modeler and a Translator, using a web browser plug-in. The plug-in component serves the same role as
Bridge; however, the plug-in component runs as part of the Web browser, whereas Bridge runs as locally installed
software. If a Web browser is present on the machine, and because the plug-in component can be delivered over the
Web and installed automatically, this configuration requires less system administrator capability than a configuration
using Bridge, which not only requires installation of Bridge itself but also, for example, a local copy of the Tcl/Tk
interpreter. Both the plug-in configuration and the (about to be described) applet configuration are Web-based,
because they rely on a Web browser to examine a URL or an HTML tag and based on that to activate Web-based
software, such as the plug-in or an applet and because the Web browser (and its plug-ins and applets) form the
primary user interface with the model author. The key characteristic which distinguishes the plug-in configuration
from the applet configuration is the ability of the Web browser plug-in to activate a local process.

Applet configuration appears in Fig. 4(d). This is a Web-based configuration. Applets are probably Java applets,
although Tcl/Tk also offers an applet, called a “Tclet.” Applets are software which are automatically delivered over
the Web with no need for local software installation. They do require that a Web browser be installed. Applets
work within the Web browser with no separate software installation. A Java virtual machine is present within the
browser, and a Tclet interpreter can be installed (the Tcl plug-in 2.0). In contrast with a browser plug-in, applets
are subject to a security model which provides clients with confidence that the applets are not performing malicious
or destructive acts. This is good in that model authors may be willing to use applets, when they might be concerned
with what an uncontrolled plug-in might do; however, the security model can add considerable difficulty to legitimate
implementations. In the applet design configuration, Modeler is an applet. Translator can exist locally as an applet,
or as a C++ executable or other program at the Warehouse. Engine and Scenario are applets, as is DOT. The
key characteristic which distinguishes the Applet design configuration from the plug-in design configuration is that
almost everything local is an applet, and it is relatively platform independent.

134

6. CONCLUSION

We defined digital objects as an extension of heterogeneous behavior multimodels. We defined the principal extension,
which is the interface. We showed how to take a digital object to a multimodel by applying the DOT transform.
We set forth the abstract base multimodel and specified four derived multimodel types. We described constituent
partial order, specified multimode! hierarchy, and stated the two heterogeneity requirements, and discussed coupling
and closure under coupling. We stated a digital object grammar. We showed how to transform a digital object a
simulation program, honoring three requirements for behavior sequencing, and then showed that the transformation
results in simulation programs which are correct with respect to execution sequence, and with an assumption regarding
experimental frame, we showed closure under coupling of digital objects. We set forth an abstract base architecture
for digital object flow and persistence, and showed four instantiated subtypes thereof.

This work provides a formal basis for multimodeling, and the architecture provides a uniform environment across
quite different environments for digital object flow and persistence. The architecture provides the hooks necessary
to integrate model repositories with the digital object development environment.

ACKNOWLEDGMENTS

We thank the following agencies that have contributed towards our study of modeling and simulation: (1) Jet Propul-
sion Laboratory under contract 961427 An Assessment and Design Recommendation for Object-Oriented Physical
System Modeling at JPL (John Peterson and Bill McLaughlin); (2) Rome Laboratory, Griffiss Air Force Base under
contract F30602-98-C-0269 A Web-Based Model Repository for Reusing and Sharing Physical Object components (Al
Sisti and Steve Farr); and, (3) Department of the Interior under grant 14-45-0009-1544-154 Modeling Approaches &
Empirical Studies Supporting ATLSS for the Everglades (Don DeAngelis and Ronnie Best). We are grateful for their
continuing financial support.

REFERENCES

1. R. M. Cubert and P. A. Fishwick, “Modeling the simulation execution process with digital objects,” in Enabling
Technology for Simulation Science I11, A. F. Sisti, ed., Proc. SPIE 3696, pp. 2-22, 1999.

2. D. R. C. Hill, Object-Oriented Analysis and Simulation, Addison-Wesley, Reading, MA, 1992. page 104.

3. B. P. Zeigler, “Review of theory in model abstraction,” in Enabling Technology for Simulation Science I, A. F.
Sisti, ed., Proc. SPIE 3369, pp. 2-13, 1998.

4. P. A. Fishwick and K. Lee, ““Two Methods for Exploiting Abstraction in Systems”,” in Proceedings of the
Seventh Annual Conference on Al, Simulation and Planning in High Autonomy Systems: Distributed Interactive
Simulation Environments, vol. 7, pp. 257264, Institute of Electrical and Electronic Engineers Computer Society
(IEEECS), Los Alamitos, CA, 1996.

5. K. Lee and P. A. Fishwick, * “Semi-automated Method for Dynamic Model Abstraction”,” in SPIE AeroSense97
Conference Proceedings, volume 3083, SPIE, Bellingham, WA, 1997.

6. P. A. Fishwick, Simulation Model Design and Ezecution : Building Digital Worlds, Prentice Hall, Englewood
Cliffs, N. J., 1995. (For multimodel types, see chapters 4 and 5.).

7. B. P. Zeigler, Theory of Modeling and Simulation, John Wiley and Sons, New York, 1976.

8. B. P. Zeigler, Multifacetted Modelling and Discrete Event Simulation, Academic Press, Harcourt Brace Jo-
vanovich, Orlando FL, 1984.

9. R. M. Cubert and P. A. Fishwick, “Software architecture for distributed simulation multimodels,” in Enabling
Technology for Simulation Science II, A. F. Sisti, ed., Proc. SPIE 3369, pp. 154-163, 1998.

10. R. M. Cubert and P. A. Fishwick, “OOPM: An Cbject-Oriented Multimodeling and Simulation Application
Framework,” Simulation 70, pp. 379395, June 1998.

11. R. M. Cubert, Digital Objects in Object-Oriented Physical Multimodeling and Simulation. PhD thesis, University
of Florida, Gainesville, FL 39611-6120, August 1999.

135

OOPM/RT: A Multimodeling Methodology for
Real-Time Simulation

Kangsun Lee

Software Lab., Corporate R & D Institute, SamSung Electronics, Seoul, Korea

and

Paul A. Fishwick

Dept. of Computer Information Science and Engineering, University of Florida, USA

When we build a model of real-time systems, we need ways of representing the knowledge about
the system and also time requirements for simulating the model. Considering these different
needs, our question is “How to determine the optimal model that simulates the system by a
given deadline while still producing valid outputs at an acceptable level of detail”” We have
designed OOPM/R(Object-Oriented Physical Modeler for Real-Time Simulation) methodology.
The OOPM/RT framework has three phases: 1) Generation of multimodels in OOPM using both
structural and behavioral abstraction techniques, 2) Generation of AT (Abstraction Tree) which
organizes the multimodels based on the abstraction relationship to facilitate the optimal model
selection process, and 3) Selection of the optimal model which guarantees to deliver simulation
results by the given amount of time. A more detailed model (low abstraction model) is selected
when we have enough time to simulate, while a loss detailed model (high abstraction model)
is selected when the deadline is immediate. The basic idea of selection is to trade structural
information for a faster runtime while minimizing the loss of behavioral information. We propose
two possible approaches for the selection: an integer programming based-approach and a search-
based approach. By systematically handling simulation deadlines while minimizing the modeler’s
interventions, OOPM/RT provides an efficient modeling environment for real-time systems.

Categories and Subject Descriptors: 1.6.5 [Simulation and Modeling]: Model Development
Gencral Terms: Modeling Methodology, Real-Time Simulation
Additional Key Words and Phrases: Model Abstraction, Model Selection, Real-Time Systems

1. INTRODUCTION

Real-time systems refer to systems that have hard real-time requirements for inter-
acting with a human operator or other agents with similar time-scales. An efficient
simulation of real-time systems requires a model that is accurate enough to accom-
plish the simmulation objective and is computationally efficient [Garvey and Lesser
1993b; Garvey and Lesser 1993a; Lee and Fishwick 1998]). We define model ac-

Name: Kangsun Lee, ksl@swc.sec.samsung.co.kr
Name: Paul A. Fishwick, fishwick@cise.ufl.edu

This work is supported by (1) GRCI (Incorporated 1812-96-20 (Gregg Liming) and Rome Labora-
tory (Steve Farr, Al Sisti) for web-based simulation and multimodeling; (2) NASA/Jet Propulsion
Laboratory 961427 (John Peterson and Bill McLaughlin) for web-based modeling of spacecraft
and mission design, and (3) Department of the Interior under ATLSS Project contract 14-45-
0009-1544-154 (Don DeAngelis, University of Miami) for techniques for both code and model
integration for the across tropic level Everglades ecosystem.

K. Lee and P.A. Fishwick

curacy in terms of the ability of a model to capture the system at the right level
of detail and to achieve the simulation objective within an allowable error bound.
Computational efficiency involves the satisfaction of the real-time requirements to
simulate the system, in addition to the efficiency of model computation. In exist-
ing applications, it is a user’s responsibility to construct the model appropriate for
the simulation task. This is a difficult, error-prone, and time-consuming activity
requiring skilled and experienced engineers.

Most CASE tools [Digital 1989] try to help the modeling process by providing
an extensive library of functions that allow a modeler to specify numerous aspects
of an application’s architecture. These tools deal with static models suitable for
producing design documents, with limited facilities for simulating the models, ana-
lyzing the results of such simulations, running what-if questions, or translating the
paper models to prototype code. However, these tools do not provide support for
specifying the real-time constraints of an application’s functions [Lark et al. 1990;
Burns and Wellings 1994].

Our objective is to present a modeling methodology with which the real-time
systems can be modeled efficiently to meet the given simulation objective and time
requirements.

One of the contributions of our research is that, with the ability to select an
optimal model for a given deadline, we provide a semi-automatic method to handle
real-time constraints for a simulation. In particular, we handle a time constraint
out of the modeling processes; therefore, modelers are relieved from considering
constraints that are not supposed to be part of modeling. Another contribution
is that by generating a set of multiple methods through abstraction techniques
and selecting the optimal abstraction degree to compose a mode! for the real-time
simulation, we mcet not only the real-time constraints, but also the perspective
which modelers see the system for a given time-constraint situation. We expect
that the proposed method can provide better sources of multiple methods for real-
time computing groups.

This paper is organized as follows : In Section 2, we discuss several related
research activities. We propose the OOPM/RT modeling framework in Section 3.
In Section 5, we present our abstraction methodology to generate a set of models
for a system at different levels of detail. In Section 6, we show how to organize the
models in a way that facilitates the selection process. Two optimal model selection
algorithms are presented in Section 7. A complete process from model generation
to the selection of the optimal abstraction level is illustrated in Section 8 through
an example. We conclude in Section 9.

2. MODELING OF REAL-TIME SYSTEMS

Real-time systems differ from traditional data processing systems in that they are
constrained by certain non-functional requirements (e.g., dependability and tim-
ing). Although real-time systems can be modeled using the standard structured
design methods, these methods lack explicit support for expressing the real-time
constraints [Kopetz et al. 1991; Lark et al. 1990; Burns and Wellings 1994]. Stan-
dard structured design methods incorporate a life cycle model in which the following
activities are recognized:

137

A Modeling Framework for Real-Time Systems

(1) Requirements Definition - an authoritative specification of the systemn’s required
functional and non-functional behavior is produced.

(2) Architectural Design - a top-level description of the proposed system is devel-
oped.

(3) Detailed Design - the complete system design is specified.

(4) Coding - the system is implemented.

(5) Testing - the efficacy of the system is tested.

For hard real-time systems, this has the significant disadvantage that timing prob-
lems will be recognized only during testing, or worse after deployment [Burns and
Wellings 1994]. Rescarchers have pointed out that the time requirements should be
addressed in the design phase [Burns and Wellings 1994; Lark et al. 1990].

Two activities of the architectural design are defined [Burns and Wellings 1994]:
1} the logical architecture design activity, and 2) the physical architecture design
actwity. The logical architecture embodies commitments that can be made in-
dependently of the constraints imposed by the execution environment, and is pri-
marily aimed at satisfying the functional requirements. The physical architecture
takes these functional requirements and other constraints into account, and em-
braces the non-functional requirements. The physical architecture forms the basis
for asserting that the application’s non-functional requirements will be met once
the detailed design and implementation have taken place. The physical architec-
ture design activity addresses timing (e.g. responsiveness, orderliness, temporal
predictability and temporal controllability) and dependability requirements (e.g.,
reliability, safety and security), and the necessary schedulability analysis that will
ensure that the system once built will function correctly in both the value and
time domains. Appropriate scheduling paradigms are often integrated to handle
non-functional requirements [Burns and Wellings 1994).

The following issues arise :

—How to capture the logical aspects of the real-time systems?
~—How to asscss duration and quality associated with each modal?
—How to resolve timing constraints?

—How to support both logical and physical activities under one modeling and sim-
ulation framework so that the resulting model is guaranteed to function correctly
in both the value and time domains?

Several areas of research relate to these issues. Real-time scheduling focuses on
how to deal with the physical requirements of the system. The main interest is to
determine a schedule that defines when to execute which task to meet a deadline.
Typical approaches to real-time scheduling assume that task priorities and resource
needs are completely known in advance and are unrelated to those of other tasks, so
that a control component can schedule tasks based on their individual characteris-
tics. If more tasks exist than the system can process, the decision about which tasks
to ignore is simple and local, usually based only on task priority [Ramamritham
and Stankovic 1984; Stankovic et al. 1985]. The resulting schedule of tasks does
not reflect the real objective of the simulation when the selection is made based
solely on task priority.

138

K. Lee and P.A. Fishwick

Real-Time Artificial Intelligence studies problem-solving methods that “given
a time bound, dynamically construct and execute a problem solving procedure
which will (probably) produce a reasonable answer within (approximately) the time
available.” [D’Ambrosio 1989] Examples of this type are found in chess programs.
Virtually all performance chess programs in existence today use full-width, fixed-
depth, alpha-beta minimax search with node ordering, quiescence, and iterative-
deepening for the real time problem solving. They make very high quality move
decisions under real-time constraints by properly controlling the depth of search
(or move) and having a good heuristic function that guides the search (or move).
Research on the real-time problem solving through search methods can be found in
Refs. [Korf 1990; Barr and Feigenbaum 1981].

The key to these approaches is to have a single problem solving method that
achieves a better result as the method is given more time. One of the problems is
that these approaches rely on the existence of iterative refinement algorithms that
produce incrementally improving solutions as they are given increasing amounts of
runtime. Clearly, such algorithms exist for some problem cases, but also there are
problems that will be difficult to solve in an incremental fashion [Garvey and Lesser
1993b; Garvey and Lesser 1993a]. An alternative to this approach is to have multiple
methods to model the system which make tradeoffs in cost versus quality, and
may have different performance characteristics in different environment situations.
Garvey and Lesser proposed the Design-to- Time [Garvey and Lesser 1993a; Garvey
and Lesser 1995] method, which is related to our approach. Design-to-time assumes
that one has multiple methods for the given tasks and tries to find a solution to
a problem that uses all available resources to maximize solution quality within
the available time. They present an algorithm for finding optimal solutions to a
real-time problem under task tree graph and task relationships [Garvey and Lesser
1995]. The algorithm generates all sets of methods that can solve the problem and
prunes those superseded by other sets of methods that generate greater or equal
quality in equal or less time. Design-to-time has a single model type and multiple
methods are generated through approximation techniques; therefore, it concerns
only the behavioral aspects of the system. In order to model a complex system, it’s
better to have different model types to efficiently characterize the different aspects
of the complex system.

3. OOPM/RT : A MODELING METHODOLOGY FOR REAL-TIME SIMULATION

We have built OOPM/RT(Object-Oriented Physical Modeler for Real-Time Simu-
lation) for aiding the user to meet arbitrary time and quality constraints imposed
upon the simulation. OOPM/RT adopts a philosophy of rigorous engineering de-
sign, an approach which requires the system model to guarantee the system’s time-
liness at design time [Lark et al. 1990]. OOPM/RT uses OOPM for the logical
architecture design activity. OOPM [Fishwick 1997] is an approach to modeling
and simulation which promises not only to tightly couple a model’s human author
into the evolving modeling and simulation process through an intuitive HCI (Hu-
man Computer Interface), but also to help a model author to perform any or all of
the following objectives [Cubert and Fishwick 1998]:

~—to think clearly about, to better understand, or to elucidate a model

139

A Modeling Framework for Real-Time Systems

to participate in a collaborative modeling cffort
- -to repeatedly and painlessly refine a model with heterogeneous model types as
required, in order to achieve adequate fidelity at minimal development cost
—to painlessly build large models out of existing working smaller models

—to start from a conceptual model which is intuitively clear to domain experts,
and to unambiguously and automatically convert this to a simulation program

—to create or change a simulation program without being a programmer

—to perform simulation model execution and to present simulation results in a
meaningful way so as to facilitate the prior objectives

By using OOPM for the sources of creating methods, we can model a system
efficiently with different model types together under one structure. For time-critical
systems, we may prefer models that produce less accurate results within an allowable
time, over models that produce more accurate results after a given deadline. The
key to our method is to use an abstraction technique as a way of handling real-time
constraints given to the system. We gencrate a sct of methods for the system at
different levels of abstraction through a model abstraction methodology. When the
constructed model cannot be executed for a different simulation condition, such
as a tighter deadline, we change the abstraction degree of the model to deliver
the simulation results by the given amount of time. A decision supporting tool is
added to OOPM in order to take these constraints into account and determine a
level of abstraction that satisfies both time and accuracy constraints. The decision
process is placed out of the modeling process, therefore modelers are relieved from
considering time constraints that are not supposed to be part of modeling.

OOPM/RT has three phases :

(1) Generating a set of models at different abstraction levels.

(2) Arranging a set of models under the abstraction relationship and assessing the
quality/cost for each model

(3) Executing model selection algorithms to find the optimal model for a given
deadline

In the first phase, a set of methods is generated at a different degree of detail
using an abstraction methodology. The second phase is to assess the expected
quality and runtime of each method and organizes a set of methods in a way to
facilitate the selection process. When the constructed model cannot be simulated
for a given amount of time, we select a level of abstraction that satisfies both time
and accuracy constraints. In the third phase, we compose a model based on the
determined level of abstraction. A more detailed model (low abstraction level) is
selected when we have enough time, while a less detailed model (high abstraction
level) is used when there is an imminent time constraint.

4. DISCUSSIONS
Several assumptions are made in OOPM/RT.

————— Sacrificing solution quality can be tolerated: Systems can be modeled by multiple
solution methods that produce tradeoffs in solution quality and execution time.

140

K. Lee and P.A. Fishwick

—Models are shared with different modelers: For a modeling task that involves
intensive cooperation, keeping a model that is more complex than required is
meaningful, even if the less complex model is valid. In the cooperative modeling
environments, the concept of validity on the model varies among the cooperating
developers; A less complex model that is valid to a modeler might be invalid to
another modeler who needs more fidelity.

—Execution time of 2 method is fairly predictable: Many timing analysis techniques
have been proposed, ranging from static, source-based methods to profilers and
testing tools, through some combination thereof. These techniques find the worst-
case paths of a program code and bound its execution time [Arnold et al. 1994;
Lim et al. 1994; Marin et al. 1994; Wedde et al. 1994]. We do not propose a new
timing analysis method in this paper. Instead, we assume that the execution time
of a method is properly measured or predicted by these available techniques.

There are several research issues unresolved in OOPM/RT.

—Optimality: The optimality of the determined level of abstraction from OOPM/RT
could only be guaranteed if we could also guarantee that we have completely
decomposed our model specifications into the least complex nodes. Thus, the op-
timal level of abstraction is limited to how extensive a set of less complex models
we have taken into account for the selection process. In this paper, we define an
optimal level of abstraction as the level of abstraction that satisfies timing con-
straints with the minimum accuracy loss among the possible alternatives, and do
not consider the optimality of model specifications.

—Validation: OOPM/RT methodology introduces a number of model validation
challenges. In this paper, we assume that the errors induced and alleviated by
model composition is up to a modeler and do not address the validation problems.
For the studies on the validation and consistency problems, refer to Refs. [Davis
and Hillestad 1993; Davis and Bigelow 1998; Kim 1998].

—Correlation: There are bound to be correlated effects between the various models
defined in AT. Results from a model may decrease the quality of other models;
Likewise, results from a model may increase the quality of other related models.
Several studies have been done to estimate a model’s quality under the existence
of correlation effects [Rutledge 1995; Garvey and Lesser 1993b]. In this paper, we
assess a model’s quality in terms of 1) degree of abstraction, 2) degree of interest
loss, and 3) degree of precision loss. Detailed descriptions on these are found
in Section 6. However, we do not include correlation effects to assess model’s
quality. 'The correlation effects should be further investigated as a future work.

In the following Section 5 - 7, we explain each phase of OOPM/RT.
5. MODEL GENERATION

We generate a set of methods for the system by using model abstraction tech-
niques. Model abstraction is a method (simplifying transformation) that derives a
“simpler” model from a more complex model while maintaining the validity (con-
sistency within some standard of comparison) of the simulation results with respect
to the behaviors exhibited by the simpler model. The simpler model reduces the
complexity as well as the quality of the model’s behavior [Caughlin and Sisti 1997).

141

A Modeling Framework for Real-Time Systems

The proper use of abstraction provides computational savings as long as the valid-
ity of the simulation results is guaranteed. Our approach is to use the abstraction
method when we need to reduce the simulation time to deliver the simulation results
by a given deadline. A set of models are generated through abstraction techniques
with different degrees of abstraction; each model simulates the system within a
different amount of time, while describing the system with a different. perspective.
Therefore, a model that is selected for a given real-time simulation is useful not
Jjust because it meets a given deadline, but also because it suggests a perspective
with which modelers view the system for a given time-constraint situation.

We have studied abstraction techniques available in many disciplines and created
an unified taxonomy for model abstraction where the techniques are structured with
the underlying characterization of a general approach [Lee and Fishwick 1996; Lee
and Fishwick 1997b]. Our premise is that there are two different approaches to
model abstraction: structural and behavioral. Structural abstraction is the process
of abstracting a system in terms of the structure using refinement and homomor-
phism [Zeigler 1976; Zeigler 1990]. Structural abstraction provides a well-organized
abstraction hierarchy on the system, while behavioral abstraction focuses only on
behavioral aspects of the system without structural preservation. We organize the
system hierarchically through the structural abstraction phase and construct an
abstraction hierarchy with simple model types first, refining them with more com-
plex model types later. Our structural abstraction provides a way of structuring
different model types together under one framework so that each type performs
its part, and the behavior is preserved as levels are mapped [Fishwick 1995]. The
resulting structure becomes a base model which has the highest resolution to model
the system. The problem is that selecting one system component from an abstrac-
tion level is dependent on the next lowest level due to the hierarchical structure.
Each component cannot be erecuted at a random abstraction level, though it can
be viewed independently. Behavioral abstraction is used when we want to simu-
late the base model at a random abstraction level. We isolate an abstraction level
by approximating the lower levels behavior and replacing them with a behavioral
abstraction method. The method discards structural information of the lower lev-
els, but the behavioral information is preserved in some level of fidelity. Possible
techniques for behavioral abstraction are system identification, neural networks,
and wavelets [Masters 1995]. Since our method involves less computation time by
discarding the structural information of lower levels, it will be used when there
is too little time to simulate the system in detail. The abstraction mechanism is
implemented in OOPM, and the models produced by OOPM become the sources
of methods for performing the real-time simulation. More detailed discussions on
our abstraction methodology are found in Refs.[Lee and Fishwick 1996; Lee and
Fishwick 1997b; Lee and Fishwick 1997a].

6. CONSTRUCTION OF THE ABSTRACTION TREE

AT (Abstraction Tree) extends the tree structure to represent 1) all the methods
that comprise the base model and 2) the refinement/homomorphism relationship
among the methods. Every method that comprises the base model is represented
as a node. Each node takes one of three types : M;, A; or I;.

142

K. Lee and P.A. Fishwick

—M; - High resolution method. It takes the form of dynamic or static meth-
ods of OOPM. We have FBM (Functional Block Model), FSM (Finite State
Machine), SD (System Dynamics), EQM (EQuational Model), and RBM (Rule-
Based Model) choices for the dynamic method, and the CODE method for the
static method.

—A; - Low resolution method. It takes the form of a neural network or a BJ (Box-
Jenkins) ARMA (AutoRegressive Moving Average) model.

—I; - Intermediate node to connect two different resolution methods, M; and A;.
I; appears where a method ¢ has been applied to behavioral abstraction, and
the corresponding behavioral abstraction method has been generated for a low
resolution method to speedup the simulation.

The Refinement/Homomorphism relationship is represented as an edge. If a
method M; is refined into Ny, Na, N3, ..., Ni, an edge(M;, N;), for j = 1,2,.... k, is
added to the AT. AND/OR information is added on the edge to represent how to
execute M; for a given submethod N;, for j = 1,2,..., k.

—AND - M; is executed only if N; is executed, Vj, j =1,2,...,k
—OR - M; is executed only if any N;, j = 1,2, ..., k, is executed

The decision of AND/OR is made based on 1) the node type of M; and 2) the
model type of M;.

(1) Node type : An intermediate node I; is executed either by M; or A;, where M;
is a high resolution method and A; is the corresponding low resolution method.
Therefore, I; is connected with the OR relationship.

(2) Model type : If a method M; takes the form of an FBM, and each block
that comprises M; is refined into Bi, Bs, ..., By, then the execution of M; is
completed when Bj;, V j, 5 = 1,2,...,k, are executed. Therefore, an FBM
method M; is connected with the AND relationship. Other examples of the
AND relationship are SD, EQM, and CODE method. However, other model
types can take the OR relationship. If a method M; takes the form of an FSM,
and each state of the FSM is refined into S;,Ss,..., Sk, then the execution of
M; is completed when any S;, j = 1,2,...,k, is executed. The decision of j is
made according to the predicate that the FSM method, M;, satisfies at time
t. Therefore, FSM method M; is executed with the OR relationship. RBM is
another example of the OR relationship.

Let T represent M;, A;, and I;. Each node, T, in AT has duration D(T) and

quality Q(T). Q(T) summarizes three properties of the quality associated with
node T'.

(1) QA(T) - Degree of abstraction. Degree of abstraction represents how much
information would be lost if the execution occurs at node T. The base model
will not be executed at the associated leaf nodes when the method T is selected
for the behavioral abstraction. QA(T) is defined by how many methods are
being discarded if behavioral abstraction occurs at node T, comparing to the
case where no behavioral abstraction is applied to the base model.

143

A Modeling Framework for Real-Time Systems

(2) QUT) - Degree of interest loss. A modeler may have certain nodes that he/she
wants to see with a special interest: If there are two nodes, 4; and Az in a
given AT, and a modeler has a special interest in A, it is preferable to take
A; for behavioral abstraction. QI(T) is defined by how many interesting nodes
are being discarded if behavioral abstraction occurs at node T, comparing to
the case where no behavioral abstraction is applied to node T.

(3) QP(T) - Degree of precision loss. Degree of precision loss represents how ac-
curately the behavioral abstraction method approximates the high resolution
method for node T'. The precision can be assessed by testing the trained neural
network or Box-Jenkin’s ARMA model. Several techniques for estimating er-
ror rates have been developed in the fields of statistics and pattern recognition,
which include hold out, leave one out, cross validation, and bootstrapping [Weiss
and Kapouleas 1989]. We use holdout method which is a single train-and-test
experiment where a data set, is broken down into two disjoint subsets, one used
for training and the other for testing. QP(T) is estimated through the testing
phase of holdout.

Based on the three quality properties, Q(T) is defined by :

eam) = M0
oy = M0
QP(T) = B(T)
Q) = QAT +QIT) + QP(T)

q

where N(T) for the number of nodes in a subtree that has T as a root node, N;(T)
for the number of interesting nodes in a subtree that has T as a root node, N; for the
total number of interesting nodes in a given AT, and N for the total number of node
in a given AT. E(T) is the normalized error rate of behavioral abstraction method
for node T'. N(T') of QA(T) is set to 1 for a leaf node. q represents the number of
quality properties specified for a node, T (1 < g < 3). For an intermediate node,
I

Q) = Q(M;) - Q(A)

where M; is the high resolution method for node I;, while 4; is the low resolution
method for node I;.

D(T) is defined based on 1) AND/OR relationship and 2) node types. For a
node type, I;, and the corresponding two different resolution methods, M; and A;,

D(I;) = D(M;) - D(A;)) +6

where § is the system factor; 8 considers if the target simulation platform is different
from the environment in which the execution time has been measured. Therefore,

144

K. Lee and P.A. Fishwick

D(I;) represents the amount of speedup by replacing the high resolution model M;
with the behavioral abstraction model A;, in any platform. For other node types,
the duration of a node is defined based on its AND/OR relationship. For an AND
related node,

k
D(T) =) N;j+6(T)+6
i=1

For an OR related node,
D(T) = Maz (N1,Na, ..., Np) +6(T) + 8

where N;, for j = 1,..., k, is the method that T calls to complete its high resolution
execution. k is the number of refined methods for T. §(7T') is the amount of time
that method T takes for its own execution. For example, in the case of an FSM,
checking the current state and determining the next state based on the predicates
might take §(T") time, while the execution of each state is assessed in the summation
term. 6 is a system factor as in the case of I; node. D(T) of an OR node is set to
the worst case execution time by taking the maximum duration of the possibilities.
This worst case assignment securely guarantees the resulting model’s timeliness.
The quality and the duration function are constructed recursively, until individual
methods at the leaf level are reached. We assume that the duration of each leaf node
is measured by available worst-case timing analysis techniques. The program code
in leaf nodes is simple in most cases, since modelers use dynamic methods (non-
leaf nodes in AT) instead to represent complex aspects of the system. Using the
available techniques is practical for simple program codes, such as the codes found
in the leaf nodes of AT.

Figure 1 shows an example of an AT. M,; is an AND related method that calls
M3, and then Mj, followed by Mas. My, is an AND related method that calls
M3s and then M3zs. A method Mi; calls My, and then Ms,. We suppose that
behavioral abstraction methods {A;1, A2, ..., A35} have been generated for each of
the corresponding high level method M;;. Each 4;; may take different model type
according to the behavioral abstraction technique. The intermediate nodes relate
a high resolution method to a corresponding behavioral abstraction. These nodes
are symbolized by {11, Lg,...,J35}. If all {11, 12, ..., I35} are executed by high
resolution methods only, the resulting structure is the base model which has been
constructed through the structural abstraction process. The quality and duration of
each node is determined by recursively applying the quality and duration equations.
4 and 6 are assumed to be 0 for each internal node.

7. SELECTION OF THE OPTIMAL ABSTRACTION MODEL

A Task is a granule of computation treated by the scheduler as a unit of work
to be allocated processor time [Liu and Chingand 1991]. The scheduling problem
is to select a task set each of which meets the given deadline. Partial orderings
of the tasks should be met in the resulting schedule. Related research has shown
the NP-completeness of this problem [Liu and Chingand 1991; Garey and Johnson
1979]. Task corresponds to method that comprises the base model, which has been

145

A Modeling Framework for Real-Time Systems

111
/220\
M11 240 A11 20
A
mM21” A21 % A% M2
131 132 133 .34/®\|35
/\10 No /\20 Azo No
M31 A31 M32 A32 M33 A33 M34 A34 M35 A35
30 20 60 20 40 20 40 20 70 20

Fig. I. Example Abstraction Tree

constructed from the model generation phase. The problem of finding the optimal
abstraction level translates to the scheduling problem, which is to find a schedule
for a set of methods that yields maximal quality for a given amount of time, while
preserving the partial temporal orderings among the given methods. In the fol-
lowing sections, we define three approaches for optimal abstraction level selection.
An optimal abstraction model is built based on the determined optimal abstraction
degree.

7.1 IP (Integer Programming)- Based Selection

Operations research (OR) [Ravindran et al. 1987; Ragsdale 1998: R Fourer and
Kernighan 1993] is a field that is concerned with deciding how to best design and
operate systems under conditions requiring the allocation of scarce resources. Our
optimal level selection problem falls under the OR umbrella, since the selection
should be made for the best model that has an optimal abstraction level to sim-
ulate a given system under conditions requiring the allocation of scarce resources,
such as time and accuracy. The essence of the OR activity lies in the construc-
tion and use of the mathematical models. The term linear programming defines a
particular class of programming problems when the problem is defined by a linear
function of the decision variables (referred to as the objective function), and the
operating rules governing the process can be expressed as a set of linear equations
or linear inequalities (referred to as the constraint set). IP refers to the class of
linear programming problems wherein some or all of the decision variables are re-
stricted to integers. Pure integer programming is a category where all the decision
variables are restricted to be integer values. Qur problem is a special case of integer
programming, where the decision variables take binary values to indicate whether
or not to select the examining node of a given AT for the behavioral abstraction.
We formulate the problem as two IP models: IP1 and IP2. A simple example is
given to analyze the IP models.

7.1.1 Formulation of IP-Based Selection. Let. a binary integer variable L;; denote
the decision to select or not to select the node I;; for the behavioral abstraction.

146

K. Lee and P.A. Fishwick

Lo = 1 if behavioral abstraction occurs at the I;; node
Y71 0 otherwise

Then, the objective function for IP! selection is defined in equation 1

! n;
Minimize Z Z L;; (1)

i=1 j=1

subject to

i

> Z aijLi;

< ac (2)

i=1 j=1

I n;
ZztijLij 2 te @)

i=1 j=1

and, for each parent node L;; of a given AT
n;

Z Liyyx <ni(1— L), for each i (4)

k=1

where [is the maximum level of the AT and n; is the number of nodes at level i. aij
represents the accuracy loss and t;; represents the expected duration. a. defines the
accuracy constraint given to the system, while t. is the amount of desired speedup
to meet a given deadline, D. Therefore, t. = ezecution time of the base model - D.

The objective function of IPI reflects the fact that the smaller number of behav-
ioral abstraction methods is desirable as long as the resulting model satisfies the
given time deadline and the accuracy constraint.

The objective function for IP2 selection is defined in equation 5

{ T
Minimize Z Z ai;Li; (5)
i=1 j=1
subject to
! n;
ZztijLij 2 te (6)
i=1 j=1

and, for each parent node L;; of a given AT

i
Z Liyix <ni(l — L), for each i (7
k=1 .

The objective function of IP2 minimizes the quality loss while satisfying the
timing constraint defined in equation 6. IP2 does not minimize the number of

147

A Modeling Framework for Real-Time Systems

behavioral abstraction methods as long as the resulting model minimizes the aceu-
racy loss. For instance, if a model, A, that cuts out three structural components,
is expected to produce more accurate results than a model, B, that cuts out only
one structural component , IP2 keeps A for a candidate of the optimal abstraction
model.

7.1.2 Analysis of IP-Based Selection. Consider AT in Figure 1. We associate
each I;; node with a binary variable L;; discussed in the previous section. Then
the objective function of IPI for a given AT is defined as :

Minimize (L11 + Loy + Loy + Lyy + Ligo + Lyy + Lyg + LBS) (8)

For simplicity, we assume that any behavioral abstraction method takes 20 units.
6 is assumed to be 0, which means real-time simulation will be performed in the
same platform with which the expected duration has been measured. Then, (t;,,
t21-, taa, t31, t3a, ta3, t34, f,gs) is defined as (220, 110 90, 10, 40, 20, 20 50),
respectively.

For the simplicity of illustration, we consider only QA(I;;) to assess the quality
loss, a;;, when the corresponding node I; is selected for the behavioral abstraction.
Then, a;; is simplified as follows:

Cij + ey Cita
(I,,'J' = N

where Cj; is the number of children that L;j has. Since the behavioral abstraction
at this level discards all the structural information of the lower levels, we believe
that the accuracy loss is proportional to the number of descendants that a node
has. The right hand side of a,; is to find out the number of descendants that node
L;; has. For a given AT in Figure 1, (a,,, a2, a2, aa1, asz, @a3, ass, ags) is defined
as (7/8,3/8/,2/8,1/8,1/8,1/8,1/8, 1/8), respectively.

For a given accuracy loss, a., the accuracy constraint of IP! is defined as :

(a11L11 + az1 Loy + agaLoy + a3 Ly + azpLaz + az3Las + azgLas + assLas) < ad9)
Also, for a given deadline, t., the speedup constraint is defined as :
(t11L1y + a1 Loy + taaLoy + t31Lar + taaLaz + az3Las + azsLag + assLas) > t{10)

To define parent and child relationships in the given AT, we have a set, of equations
for all the child nodes of the given AT.

L3y + Las+ Laz > 3(1 - Lyy)
L3g + Lag > 2(1 — La3) (11)
La; 4 Loy >2(1 — L)

K. Lee and P.A. Fishwick

M31 A31 M32 A32 M33 A33
30 20 60 20 40 20

Fig. 2. Optimal abstraction tree decided from the integer programming approach

Then, the IP1 selection of the optimal abstraction level for a given AT is to solve
the objective function defined in equation 8 subject to the constraints defined in
equations 9- 11.

Figure 2 shows the result when we have 120 units for a deadline (t, = 120) and
(50%) for an accuracy constraint (a, = 0.5). The resulting AT concludes that apply-
ing behavioral abstraction at I; and T4 gives the optimal abstraction level which
simulates the system within a given deadline and the accuracy constraint with the
minimum loss of the structural information. I; is executed by its behavioral ab-
straction method, Az;. Also, I34 is executed by its behavioral abstraction method,
Azq, instead of the high resolution method, My,s. Other intermediate nodes (Iss,
I, Iy) are executed by the high resolution methods. The intermediate nodes,
I31, I3z, and I35 are not considered , since the behavioral abstraction occurs at the
parent node, I5;, as defined in equation 11. The execution time of the AT is saved
by the speedup amount that A;; and As4 yield. The execution of IP2 is same to
IP1 with the objective function and the time constraint defined as :

Minimize(a11L11 + az1La1 + ag2 Loy + as1Lay + asa Lz + aszLas + aseLsg + agsLas)
subject to
(t11L11 + t21 Lot + taa Loy + t31L31 + tsaLay + assLas + azsLaa + assLas) > t.

7.2 Search Based Selection

Our hypothesis is that as we need tighter time constraints, we tend to employ more
behavioral abstraction methods. We increase the number of behavioral abstraction
methods as we require more stringent deadlines for the heuristics. The selection
algorithm starts from one behavioral abstraction. If this abstraction satisfies the
time constraint, we stop and do not go further to examine other possibilities, with
the hope that increasing the number of behavioral abstraction methods will result
only in a less accurate model. If the time cannot be met by one behavioral abstrac-
tion method, we examine how many behavioral abstraction methods will be needed
for a given time constraint. This is done by examining r fast behavioral abstrac-
tion methods. If combining r fast behavioral abstraction methods satisfies the time

149

A Modeling Framework for Real-Time Systems .

Algorithm 1. Optimal Abstraction Level Selection

1: nodes < at.ConstructAT(fid)

2: baseCost < nodes[0].getCost()

3: if buseCost < deadline then

4: return(0)

5: endif

6: at.CollectOrNodes({nodes,orNodes)

7: size <= at.SelectOneByDeadline(orNodes,deadline)
8: if size > 0 then

9: at.Select By Accuracy(orNodes)

10: OptimalAbstraction < orNodes[0].getName()

11: else

12: degree <= OptimalAbsNumber(orNodes,deadline,baseCost)
13: if degree == -1 then

14: return(-1)

15: else

16: OptimalSet < OptimalCombination(ornodes,deadline,baseCost degree)
17: OptimalCost < OptimalSet.cost

18: OptimalQualityLoss < OptimalSct.qualityloss
19: end if

20: end if

21: return(0)

constraint, then the optimal abstraction level will be determined by r hehavioral
abstraction methods. At this point, we start. to pick r behavioral abstraction func-
tions until the most accurate combination is found while still satisfying the given
time constraint. Algorithm 1 shows the overall method in detail.

This algorithm reads abstraction information about a given base model. The
information contains methods, parent/child relationships between the nodes, and
duration/quality information for each method. Based on the given information, the
algorithm constructs an AT as in Line 1. The execution time of the base model
that has no behavioral abstraction methods is calculated in Line 2. Lines 3 - 5
examine whether we need to employ behavioral abstraction methods to meet a
given deadline. If the calculated duration of the base model is less than or equal to
the given deadline, we don’t have to employ behavioral abstraction methods; thus,
the algorithm terminates. If the duration of the base model is greater than the given
deadline, then it becomes necessary to use behavioral abstraction methods. Upon
recognizing the necessity of behavioral abstraction methods, the algorithm collects
OR nodes that contain the information about the behavioral abstraction methods
and then starts to increase the number of behavioral abstraction methods. Line
8 examines whether one behavioral abstraction method will resolve the timeliness
requirement. If the returned size is greater than 0, as in Line 9, we know that one
behavioral abstraction is enough to meet a given deadline. Then, the algorithm
looks up the most accurate method to ensure that the selected method will have
the best quality while satisfying the given deadline. If one behavioral abstraction is
not enough to achieve the given deadline (size < 0), the algorithm determines how
many behavioral abstraction methods can achieve the given deadline. We know that
behavioral abstraction methods will bring more savings to the execution time of
the resulting model. Qur objective is to minimize the use of behavioral abstraction

150

K. Lee and P.A. Fishwick

methods as long as the resulting model meets the given deadline. A simple method
defining degree in line 12 is :

1) i=2

(2) select i behavioral methods that will bring the maximum time savings to the
given base model;

(3) if the use of ¢ behavioral methods cannot resolve the required speedup, increase
1 by 1 and go to step 2;

At this point, the algorithm knows how many behavioral abstraction methods
will be needed for a given deadline. If the returned degree is —1, it means the
given deadline cannot be met even if we use all available behavioral abstraction
methods. Lines 16 - 18 look for the best combination that will lead to the most
accurate model. The algorithm examines all nCr combinations, where n represents
the number of behavioral abstractions available to the given base model and r is
the calculated degree in Line 13.

7.3 Experiments

We implemented the proposed integer programming solutions with solver on Excel.
For a small problem space as in the case of Figure 1, solver of Excel might be a
good choice. However, if the problem size is large, we can use CPLEX [CPLEX
1995] which is an optimization callable library designed for large scale problems.

For the exact solution method, we use the branch and bound method, which is a
classical approach to find exact integer solutions. The branch and bound method
is an efficient enumeration procedure for examining all possible integer feasible
solutions [Ravindran et al. 1987; CPLEX 1995]. Through the branch and bound
method, the binary variable L;; takes either 0 or 1.

Table 1 shows some results from the experiments of IP1, IP2 and search-based
approach. IPI and Search try to maintain the base model’s structure (i.e. dynamic
methods) as long as the given speedup amount is achieved. IP2 does not try to
maintain the base model’s structure as long as the overall accuracy loss is mini-
mized with the desired speedup amount. L;; nodes indicate where the behavioral
abstraction methods should be employed to meet both a time constraint, t., and an
accuracy constraint, a.. The actual accuracy loss and speedup amount from IP1,
IP2 and Search selection are listed in Table 1 along with the L;; results.

When the base model meets a given deadline, as in case 1, no behavioral ab-
straction is suggested. Also, when a given deadline is immediate, the entire AT is
behaviorally abstracted into one method as in case 12. Ly; is selected as a place to
apply the behavioral abstraction for a given deadline of 20. Other cases employ one
or two behavioral abstraction methods to meet a given accuracy constraint while
satisfying a time constraint. Note that IP2 selects equal or more number of nodes
comparing to IP1. Case 7 shows that the objective of IP1 is to meet both accuracy
and time constraint, while minimizing the loss of structural abstraction methods.
Case 11 shows that the objective of IP2 is to minimize the expected quality loss
rather than to minimize the loss of structural abstraction methods.

Given an optimal abstraction level determined by the selection algorithms, the
Optimal Abstraction Model Composer looks at the method names which comprise

15]

A Modeling Framework for Real-Time Systems .

Table 1. Experiment results from IP1, IP2 and search-based approach: L;; indicates where to
employ behavioral abstraction method(s), A,,, for a given simulation deadline and an accuracy
constraint, ac. The actual accuracy loss and speedup amount achieved from the selection are
listed along with L;; results

No | Deadline | ac te 1P1 P2 Search
1 240 0.5(50%) | 0 n/a n/a n/a
220 0.5(50%) | 20 L34 L34 L3a
ac = 0.125(13%) | ac = 0.125(13%) | ac = 0.125(13%)
deadline = 220 deadline = 220 deadline = 220
3 200 0.5(50%) | 40 L5 Ljs L3s
ac = 0.125(13%) | ac =0.125(13%) a. =0.125(13%)
deadline = 190 deadline = 190 deadline = 190
4 180 0.5(50%) | 60 Loa L32, L3a Lo
ac = 0.25(25%) | ac =0.25(25%) ac = 0.25(25%)
deadline = 150 deadline = 180 deadline = 150
5 160 0.5(50%) 80 Loo Lo Loo
a. = 0.25(25%) a. = 0.25(25%) ac = 0.25(25%)
deadline = 150 deadline = 150 deadline = 150
6 140 0.5(50%) | 100 | Lo Loy, L33. L3s Loy
uc = 0.375(38%) | ac = 0.375(38%) | ac = 0.375(38%)
deadline = 130 deadline = 80 deadline = 130
7 120 0.5(50%) 120 | Loy, Lag Log, L32 Loo, L3o
ac = 0.5(50%) ac = 0.375(38%) | a. = 0.375(38%)
deadline = 110 deadline = 110 deadline = 110
8 100 0.5(50%) 140 | Ly, Las Ly, L3a, Lag Loy, Las
ac = 0.5(50%) ac = 0.5(50%) ac = 0.5(50%)
deadline = 80 deadline = 90 deadline = 80
9 80 0.5(50%) 160 | La1, Lys Lyy, Las Ly, Las
ac. = 0.5(50%) ac = 0.5(50%) ac = 0.5(50%)
deadline = 80 deadline = 80 deadline = 80
10 60 0.7(70%) 180 | L2y, Lo Ly, Lao Ly, Lao
ac = 0.625(63%) | ac = 0.625(63%) | a. = 0.625(63%)
deadline = 40 dcadline = 40 deadline = 40
11 40 0.9(90%) | 200 | Ly Loy, Loa L11
ac = 0.875(88%) | ac = 0.625(63%) | a. = 0.875(88%)
deadline = 20 deadline = 40 deadline = 20
12 {20 0.9(90%) | 220 | L1, Ly Ly
ac = 0.875(88%) | ac = 0.875(88%) | ac = 0.875(88%)
deadline = 20 deadline = 20 deadline = 20

152

K. Lee and P.A. Fishwick

Fig. 3. Conceptual model of FULTON: FULTON is modeled within OOPM Conceptual model
is designed in terms of classcs, attributes, methods (dynamic method and static method) and
relationships of classes (inheritance and composition)

the optimal abstraction level for a given AT. The optimal abstraction model is
composed by observing the partial temporal orderings of the selected methods.

8. FULTON EXAMPLE

Consider a steam-powered propulsion ship model, named FULTON. In FULTON,
the furnace heats water in a boiler: when the fuel valve is OPEN, fuel flows and
the furnace heats; when the fuel valve is CLOSED, no fuel flows and the furnace
is at ambient temperature. Heat from the furnace is added to the water to form
high-pressure steam. The high-pressure steam enters the turbine and performs
work by expanding against the turbine blades. After the high-pressure steam is
exhausted in the turbine, it enters the condenser and is condensed again into liquid
by circulating sea water [Gettys and Keller 1989]. At that point, the water can be
pumped back to the boiler.

8.1 Model Generation

A conceptual model is constructed on OOPM. It is designed in terms of classes,
attributes, methods, and relationships between classes (inheritance and composi-
tion). Figure 3 shows the class hierarchy of FULTON, which follows the physical
composition of a steamship. Classes are connected by a composition relationship as
denoted by the rectangular boxes in Figure 3. V denoted in the white box specifies
1 for the cardinality of the associated class. In Figure 3, Ship has Boiler, Turbine,
Condenser, and Pump. Class Boiler has Pot and Knob. Each class has attributes
and methods to specify its dynamic behaviors.

8.1.1 Structural Abstraction of FULTON. Figures 4, 5, and 6 show structural
abstractions of FULTON. Since FULTON can be configured with 4 distinct physical
components and a functional directionality, we start with FBM. The FBM is located
in class Ship, as shown in Figure 4. Figure 4 has 4 blocks: L; for the function of

153

A Modeling Framework for Real-Time Systems

e : PORCTIONAL NIiOCK MBOLEGE e oSl fg=aa i}
fhe a8 tha gea

LhEmg B-@ 7
';
|
|
LT

L‘_}:@A;’;m!mt

1 2 F]
Lt L2 L3

i

Fig. 4. Top level : structural abstraction for FULTON

Fig. 5. Structural abstraction of M7: FSM has 4 states (Cold (M13), Cooling (M14), Heat-
ing (M15) and Boiling (M16))

Boiler, Ly for Turbine, Ly for Condenser, and Ly for Pump. Boiler assembly (L1)
has distinct states according to the temperature of the water. Ly is refined into :
{1) By : method of class Knob, M6, which provides fuel to the boiler

(2) Bz : FSM, Mz, in Figure 5, which determines the temperature of the hoiler
and makes state transitions according to the temperature

(3) Bs : provides high-pressure steam, defined in a CODE method, M8
Each state of Figure 5 (Cold (M13), Heating (M14), Boiling (M15), and Cool-
ing (M16)) is refined into an algebraic equation, which calculates the temperature

based on the position of the knob (Open, Closed). Each state of B, is refined into
a CODE method that defines the temperature equations with C++ syntax.

154

K. Lee and P.A. Fishwick

0”’”:1*” »««\5
! ~*‘%‘. et S

o,
ol e
ol rad

(a) Structural abstraction of M (b) Structural abstraction of M2

Fig. 6. Structural abstraction of M;¢ and Mis

L, is refined into two functional blocks: M9 and M10. M9 gets the high pres-
sure steam from the boiler. M10 is decomposed into two temporal phases: FEz-
hausting (M17) and Waiting (M18). If there is no steam to exhaust, M 10 resides
in the waiting state. Otherwise, M10 exhausts steam to generate the work of the
steamship. Figurc 6 shows the FSM of the turbine. Lj is also refined into two
functional blocks: M11 and M12. M11 gets the exhausted steam from the turbine.
M12 has two distinct temporal phases: Condensing (M19) and Cooldown (M20),
in Figure 6. Condenser decreases the temperature in Cooldown state, waiting for
the turbine to send more steam. Otherwise, M12 resides in Condensing state
where the steam from the turbine turns into liquid again.

8.1.2 Behavioral Abstraction of FULTON. We start with the observed data set of
(input, output) from the simulation of the base model. With this prior knowledge,
the method of behavioral abstraction is to generate a C4-+ procedure which encodes
the input/output functional relationship using a neural network model (MADA-
LINE, Backpropagation) or a Box-Jenkins model.

We abstract the multimodel method of M 7, M10 and M12 with Box-Jenkins
models. Given three behavioral abstraction methods for M 7,M10 and M12, 8 (2%)
new models can be generated with different degrees of abstraction. Table. 2 shows
the possible combinations of the behavioral abstraction methods. For example, C6
uses two behavioral abstraction methods for M7 and M12. T herefore, the struc-
tural information associated with M7 and M 12 methods, which are both FSMs,
are abstracted.

When modelers create a behavioral abstraction method, they pick the dynamic
function to abstract. Figure 7 shows the Box-Jenkins abstraction process for M7.
Based on the learning parameters of the Box-Jenkins, we learn the input Joutput
functional relationship of M7. Once the performance of the Box-Jenkins model
is accurate enough, we generate a behavioral abstraction method based on the
resulting weight and offset vector.

155

A Modeling Framework for Real-Time Systems .

Table 2. New multimodels of FULTON with behaviorally abstracted component(s): A capital
letter represents a full-resolution model, while a small lctter represents a low-resolution model.

The low resolution model is generated through behavioral abstraction

no Model Abstracted Abstracted
Method Component
C; BTCP NJ/A N/A
Co Blck M12 Condenser
Cs BtCP M10 Turbine
Cy4 BtcP M10, M12 Turbine, Condenser
Cs DbTCP MT Boiler
Ces DbTcP M7, M12 Boiler, Condenser
C7 btCP MT, M0, Boiler, Turbine

Cg btcP M7, M10, M12 Boiler, Turbine, Condenser

LrNEte A

Z TR R ETE T Y R A

e T S R oy Learning
) b - —-J Result
[T T Plot

3

inepr foer
LRI B
=y :‘ Graph of B
) temperature
Fonwoer T gy - versus time

*oaralal

T bin gendte i

B e, b -

i e

‘
t H [A L r.,»m)a
LT EY fre e D e i bl l Pl l
H —
200 Saktde vk B dan 1%

» s
o N freat e by M "

! wodl ko [Fvmndt any v e > bre

A rtre frwer. g T
£t 0 3 FELTR ST 2 e it ¢ s i ; .
‘!lr . Lt 2sb .
At ot oow TLIR s o paossr sopude ‘
s e Tdelm b e Mg ¥

e H 56 AT o Lok £ wd e d - [I D ;

L L N L K
PSR s eme TTHEY s BT
Wl spd e bets Eagr vy Ay J
AN AN
» Log Window i

Learning Parameters for
Box-Jenkins mode!

Fig. 7. Behavioral abstraction : The user selects a dynamic function to abstract, Pot::HeatPot,
which is an FSM. States and their transitions will be lost, but behavioral information will be
preserved to some level of fidelity. In the learning process, the user gives several parameters, for

example, lag for input and output variables

156

K. Lee and P.A. Fishwick

KU 500 TRb 1S e S 2 s AR D

£ "
4 .
rn. «y N
k_-a : .
= * 2: . +
HER | AJ:: - .o
= L . ;
fa_ 4 !‘ Q * A ' \
: s .-)
o . -
* Y
[‘_,t.,'»’ ’ § . L)
oo b . R
i I
. . s H L S S F T S AU SO TR
x’ % + ® * » .
Eamnws v
(a) Execution time (msec(lﬁd)) of multi- (b) Accuracy loss of multimodels: rela-
models. {measured on Windows NT, x86, tive accuracy loss to the most detailed
Intel 133 MHZ) model, C;. (measured by the sum of

the squared error)

Fig. 8. Execution time/ accuracy loss of models: Behavioral abstraction yields shorter elapsed
times. As we increase the level of abstraction by using more behavioral abstraction methods,
the model execution time decreases. Accuracy is lost as we increase the number of behavioral
abstraction methods in the base model

8.2 Construction of the Abstraction Tree

The model sets in Table 2 provide alternatives that vary in the expected accuracy
and in the computation time; it thus allows us to investigate the effects of model
structure on model accuracy and on computation time. We measured the execution
time of each model by varying the simulation logical clock from 50 to 500 using
a time step of 50. As shown in Figure 8, the most detailed model, C;, takes the
longest time, and the least detailed model, Cg, runs faster than the other models.

The cumulative accuracy loss of each model is also measured in Figure 8. The
accuracy loss of the Box-Jenkins model is measured by examining the sum of the
squared error through the Box-Jenkins testing process. As simulation proceeds, the
cumulative accuracy loss increases for each model. The least detailed model, Cj,
has the maximum accuracy loss, while C; shows the minimum accuracy loss over
time.

Figure 9 shows the AT of FULTON. We applied the Box-Jenkins hehavioral
abstraction technique to three methods, (M7, M10, M12), and produced (A7,
A10, A12), respectively. I; node is positioned where the two associated different
resolution methods reside. Intermediate nodes I; are connected to the children by
the OR relationship.

The execution time of leaf methods can be measured by extensive experimen-
tation [Lark et al. 1990], or assessed by available worst-case timing analysis tech-
niques [Arnold et al. 1994; Lim et al. 1994; Marin et al. 1994; Wedde et al. 1994].
To simplify the illustration, we assume that the execution time of each leaf method
(M6, M13, M14, M15, M16, M8, M9, M17, M18, M11, M19, M20, M5) in

157

A Modeling Framework for Real-Time Systems

Ml

TS

M3 M4 Ms
9

M2
M6 /7\ M8 M KMH I]2

ﬂw\m % . K)
MI13 M4 MI15 Ml6 MI17 MI18 MI19 M20

Fig. 9. Abstraction Tree of the FULTON example: Intermediate node I; is introduced to connect
the high resolution method M; and low resolution method (behavioral abstraction method), A;

the AT is properly assessed to (2,2,8,4,6,2,2,4,3,2,2.4,2), respectively by using the
available analytic tools. Also, we assume that (A7, 4,0, A1) takes (4,2,2), respec-
tively. Non-leaf nodes repeatedly look for child’s execution time and calculate its
own execution time by applying the execution time assessment cquations discussed
in Section 6. System factor, 6, is assumed to be 0: therefore, the target platform in
which the model will be executed is the same one in which the model execution time
is measured. We assume that there is no special interesting class for the simulation.
The precision loss of A; is assumed to be 0.4, while (4,9, A;2) is assumed to be
(0.1, 0.2), respectively. Then, the quality loss of each method, a7, aig, and ayy is
defined by 0.325,0.125, and 0.175, respectively.

8.3 Selection of the Optimal Abstraction Model

The base model of FULTON takes 26 units to complete the simulation. Suppose we
have 20 units for a deadline. Upon receiving the time constraint, we immediately
know that the behavioral abstraction is needed to make the simulation faster. The
optimal abstraction level is determined by IP!, IP2 and the search-based algorithm
discussed in Section 7.2.

For a given AT in Figure 9, the objective function of the IP1 is defined as:

Minimize (I7 + Io + Ls) (12)

subject to
arlz + aiolio + a12512 < a,
trelr + tiolio + t1alia > t.
a7 = 0.375, a;9 = 0.125, a;» = 0.175
tr=4, to=2, t1=2

158

K. Lee and P.A. Fishwick

Then, the IP1 selection of the optimal abstraction level is to solve the objective
function defined in equation 12 with the constraints defined in equation 13. Since
the desired speedup to be achieved for a given deadline is 26 — 20 = 6, we assign 6
to t.. To find out the most accurate combination, we assign 1.0 to a.. Therefore,
the accuracy is not constrained to a certain bound.

The objective function of the IP2 approach is defined as :

Minimize (I7 * a7 + Iio * a0 + I12 * a12) (14)

subject to

trIy + tiodio + tiad12 > £,

ar = 0.375,(110 = 0.125,(112 =0.175 (15)

t7 = 4,810 = 2,12 = 2

Then, the IP2 selection of the optimal abstraction level is to solve the objective
function defined in Equation 14 with the constraints defined in Equation 15.

The search-based algorithm increases the number of behavioral abstraction meth-
ods to be used for the deadline. The algorithm examines whether one behavioral
abstraction method will resolve the time constraint. Neither of the candidates
meets the deadline. Therefore, the algorithm increases the number of behavioral
abstraction methods to use for the simulation. The fastest behavioral abstraction
A7 achieves the deadline if either of A;g or A;5 is combined with A;. Therefore,
the algorithm concludes that using 2 behavioral abstraction methods will resolve
the timeliness requirement. At this point, the algorithm starts to find the most
accurate combination. (A7, Aip) meets the deadline with the maximum accu-
racy. Therefore, the algorithm declares (A7, A1g) as the optimal abstraction degree
for a given AT and a deadline of 20. Figure 10 shows the optimal abstraction
level of the given AT. The execution of (I7,I1p,I12) is made by (A7, A1g, M13),
respectively. Then, the optimal abstraction model is composed of the sequence
(Ms, A7, Mg, My, Ay, M11, My2, M5). Note that the FSM models of Boiler and
Turbine are cut, off to save simulation time. The corresponding scheduling diagram
is shown in Figure 11.

Table 3 shows other selection examples. IP2 produces a different answer for a
deadline of 22. IP! and the search-based methods minimize the number of behav-
ioral abstraction methods in order to minimize the loss of structural information.
When modelers want to minimize the loss of structural information (to preserve
the base model structure as much as possible), behavioral abstraction occurs at I7.
However, if the simulation objective is to minimize the expected quality loss, we
apply behavioral abstraction at I;o and I, as suggested from IP2.

9. CONCLUSIONS

We demonstrated a semi-automated methodology to build a model that is right for
the simulation objective and real-time constraints. The key to our method is to
use the model abstraction technique to generate multiple methods of the system

159

A Modeling Framework for Real-Time Systems

Ml

MI13 M14 MI15 Ml6

Fig. 10. Optimal abstraction level for a deadline of 20
Base Mode!
M7
M6 Mg MO MIO Ml M2 MS
l i | ——-] t—_,_.~. {
i I I ! I I I 1
2 4 6 8 10 12 14 16 18 20 22 24 26
Optimal Abstraction Model for deadline = 20 E
M6 Mg M9 mil M2 Ms |
| I | |] l | I
I 1 1 1 I I I 1 | L
2 4 6 8 10 12 14 16 18 20 22 24 26
. :
A7 Al0 deadline
Fig. 11. Scheduling diagram for a deadline of 20
Table 3. Selection examples of three algorithms for FULTON
deadline 20 22 24
IP1 I7, Iig I7 Lo
a. =05 ac = 0375 a, =0.175
Ip2 17, Io Iio, Iz Io
a. = 0.5 a. = 0.3 a. = 0.175
Search 17, Io Iy Io
ac = 0.5 ac = 0375 a. =0.175

160

K. Lee and P.A. Fishwick

which involve tradeoffs in runtime versus accuracy. Modelers construct the abstrac-
tion hierarchy through a structural abstraction phase, and we use the abstraction
hierarchy for the source of information where the optimal abstraction degree is
determined. By applying the proposed algorithms that determine the optimal ab-
straction level to simulate the system for a given deadline, we find position(s) where
the behavioral abstraction technique is applied. Behavioral abstraction yields time
savings of the simulation by discarding detailed structural information, though ac-
curacy is sacrificed. The resulting model simulates the system at an optimal level
of abstraction to satisfy the simulation objective for a given deadline so as to maxi-
mize the tradeoff of model execution time for accuracy. One of our assumptions was
that quality and execution time of the abstraction methods are fairly predictable.
Predicting the execution time is possible, in general, by using the available research
on runtime estimation techniques; however, assessing the method’s quality is dif-
ficult. Especially, when the result from a method decreases the quality of other
methods, the estimation becomes more complicated. One of the possible solutions
is to monitor the selected model’s execution under the real-time simulation [Garvey
and Lesser 1993b]. When the selected model takes longer time than expected, or
the solution quality is lower than expected during the real-time simulation, it is re-
ported to the monitor to take an action. Then, the appropriate actions can be taken
to adjust the problems that have been caused by under-estimated/over-estimated
duration or quality.

ACKNOWLEDGMENTS

We would like to thank the following funding sources that have contributed towards
our study of modeling and implementation of the OOPM multimodeling simula-
tion environment: (1) GRCI Incorporated 1812-96-20 (Gregg Liming) and Rome
Laboratory (Steve Farr, Al Sisti) under contract F30602-98-C-0269 a web-based
model repository for reusing and sharing physical object components; (2) NASA /Jet
Propulsion Laboratory 961427 (John Peterson and Bill McLaughlin) for web-based
modeling of spacecraft and mission design, and (3) Department of the Interior un-
der ATLSS Project contract 14-43-0009-1544-154 (Don DeAngelis, University of
Miami) for techniques for both code and model integration for the across-tropic-
level Everglades ecosystem. Without their help and encouragement, our research
would not be possible.

REFERENCES
ARNOLD, R., MUELLER, F., AND WHALLEY, D. 1994. Bounding worst-case instruction cache
performance. In The IEEE Real-Time Systems Symposium (1994), pp. 172-181.

BARR, A. AND FEIGENBAUM, E. A. 1981. The Handbook of Artificial Intelligence. William
Kaufmann.

BURNS, A. AND WELLINGS, A. 1994. Hrt-hood: A structured design method for hard real-
time systems. Real-Time Systems 6, 73-114.

CAUGHLIN, D. AND SiSTI, A. 1997. A summary of model abstraction techniques. In Pro-
ceedings of SPIE97 (1997), pp. 2-13.

CPLEX. 1995. Using the CPLEX Callable Library. CPLEX Optimization, Inc.

CUuBERT, R. M. AND FISHWICK, P. A. 1998. Oopm: An object-oriented multimodeling and
simulation application framework. Simulation 70, 6, 379-395.

161

A Modeling Framework for Real-Time Systems

D’AmBRros1o. B. 1989. Resource bounded-agents in an uncertain world. In International
Joint Conference on Artificial Intelligence (1989).

Davis, P. K. AND BicELow, J. 1998. Introduction to multiresolution modeling (mrm) with
an example involving precision fires. In SPIE: Enabling Technology for Simulation Science
17 (1998), pp. 14-27.

Davis, P. K. anp Hintestan, R, 1993, Aggregation, disaggregation, and the challenge of
crossing levels of resolution when designing and connecting models. In Proceedings of Al
Simulation and Planning in High Autonomous Systems (1993), pp. 180 188.

DiGITAL. 1989. CASE for Real-Time Systems Symposium. Digital Consulting, Andover,
MA.

Frsawick. P. A. 1995. Simulation Model Design and Ezecution: Building Digital Worlds.
Prentice Hall.

Fisnwick. P. A, 1997. A visual object-oriented multimodeling design approach for physical
modeling. University of Florida Technical Report 9.

GAREY, M. R. AND Jounson, D. S 1979. Computers and intractability. W.H. Freeman and
company.

GARVEY, A. J. AND LESSER, V. R. 1993a. Design-to-time real-time scheduling. JEEE Trans-
actions on Systems. Man and Cybernetics 23, 6, 1491 1502.

GARVEY, A. J. AND LESSER. V. R. 1993b. A survey of research in deliberative real-time
artificial intelligence. UMass Computer Science Technical Report 93-84.

GARVEY, A. J. AND LESSER, V. R. 1995. Design-to-time scheduling with uncertainty. UMass
Computer Science Technical Report 95-03.

GETTYS, E. AND KELLER, F. 1989. Physics. McGraw-Hill.

KM, G. 1998. A model validation methodology for isolating inconsistent knowledge be-
tween fuzzy rule-based and quantitative models using fuzzy simulation. Ph.D Dissertation,
Department of Computer Information Science and Engincering.

KoPETZ, H., ZAINLINGER, R., FOHLER, G., KANTZ, H., PUSCHNER. P., AND ScuuTz, W. 1991,
The design of real-time systems: From specification to implementation and verification.
Software Engineering 6, 72-82.

Korr, R. E. 1990. Depth-limited scarch for rcal-time problem solving. Real-Timc Sys-
tems 2, 7-24.

LARK, J. S., ERMAN, L. D., FORREST, S., AND GosTELow, K. P. 1990. Concepts, methods,
and languages for building timely intelligent systems. Real-Time Systems 2, 127-148.
Ler, K. anp Fisuwick, P. A, 1996. Dynamic model abstraction. In Proceedings of Winter

Simulation Conference (1996), pp. 764 771.

LEE, K. AND FISHWICK, P’. A. 1997a. A methodology for dynamic model abstraction. Trans-
actions of the society for computer simulation international 13, 4, 217-229.

Ler, K. ann Fisewick, P. A, 1997b. A semi-automated method for dynamic model ab-
straction. In Proceedings of AeroSense 97 (1997), pp. 31 41,

LEE, K. AND FisHwick, P. A. 1998. Generation of multimodels and selection of the optimal
abstraction level for real-time simulation. In AeroSense 1998 (1998), pp. 164-175.

L, 8. S., BAr, Y. H., JanG, G. T., AND AL., E. 1994. An accurate worst case timing
analysis for risc processors. In the IEEE Real-Time Syslems Symposium (1994), pp. 97- 108.

Liv, 5. AND CHINGAND, Z. 1991. Algorithms for scheduling imprecise computations. IEEE
Computer 24, 5, 58-68.

MARIN, G., BAKER, H. T., AND WALLEY, D. B. 1994, A retargetable technique for predict-
ing execution time of code segments. Real-Time Systems 7, 2, 130-159.

MaSTERS, T. 1995. Neural, Novel and Hybrid Algorithms for Time Series Prediction. John
Wiley and Sons, Inc.

R FOURER, D. G. AND KERNIGHAN, B. 1993. AMPL: A Modeling Language for Mathemal-
ical Programming. The Scientific Press.

RAGSDALE, C. T. 1998. Spreadsheet Modeling and Decision Analysis: A Practical Intro-
duction to Management Science. South-Western College Publishing.

162

. K. Lee and P.A. Fishwick

RAMAMRITHAM, K. AND STANKOVIC, J. A. 1984. Dynamic task scheduling in distributed
hard real-time systems. IEEE Software [, 3, 65-75.

RAVINDRAN, PHILLIPS, D.; AND SOLBERG, J. J. 1987. Operations Research. John Wiley and
Sons.

RUTLEDGE, G. W. 1995. Dynamic selection of models. Ph.D Dissertution, Department of
Medical Information Sciences, Stanford Universily.

STaNKovIC, J. A., RAMAMRITHAM, K., AND CHENG, S. 1985. Evaluation of a flexible task
scheduling algorithm for distributed hard real-time systems. IEEE Transactions on Com-
puters 34, 12, 1130-1143.

WEDDE, H. F., KorEL, B., AND HurzingA, D. M. 1994. Formal timing analysis for dis-
tributed real-time programs. Real-Time Systems 7, 1, 58-90.

WEIss, S. M. AND KAPOULEAS, I. 1989. An experimental comparison of pattern recogni-
tion, neural nets, and machine learning classification methods. In Proceedings of IJCAI-89
(1989), pp. 781-787.

ZEIGLER, B. P. 1976. Theory of Modelling and Simulation. John Wiley and Sons.

ZEIGLER, B. P. 1990. Object Oriented Simulation with Hierarchical, Modular Models: In-
telligent Agents and Endomorphic Systems. Academic Press.

163

#U.5. GOVERNMENT PRINTING OFFICE: 2001-610-055-10047

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

